1. idea I study math라는 입력문장을 unique한 단어들의 vocabulary로 변환하면 {‘I’, ‘study’,’math’} 사전의 각 단어는 vocab size만큼 차원을 갖는 one hot vector이다. ‘I’는 [1,0,0] ‘study’는 [0,1,0] ‘math’는 [0,0,1] sliding window라는 기법은 한 단어를 중심으로 앞 뒤로 나타난 단어들과 (중심단어,주변단어) 입출력쌍을 구성하는 기법이다. 이 단어 쌍에서 중심단어를 input으로 두고 주변단어를 output으로 두는 예측 task를 수행하는 2-layer neural network를 구성한다. one hot vector의 차원이 3차원이니 input과 output layer의 차원은 3차원 hidde..
1. LeNet 1998년 Yann LeCun이 간단한 CNN구조를 소개했다 convolution layer 2번과 fully connected layer 2번을 반복했다 한글자 단위 특히 우편물 번호 인식에 크게 성공하여 우편 운송의 혁신에 기여했다고 함 2. AlexNet LeNet의 기본 구조에서 아이디어를 가져왔다 그런데 hidden layer를 7층으로 쌓고 6000만 parameter를 사용 학습데이터도 ImageNet에서 어마어마하게 큰 120만 dataset을 사용했다 ReLU와 dropout이라는 지금도 사용하는 강력한 기법을 사용했다 재미있는 점은 첫번째로 두개의 pass로 나눴다는 것인데 당시 GPU가 부족해서 2개의 forward pass로 나눠서 올렸다 중간에 activation이..
1. 2012 AlexNet AlexNet 이전에는 고전적인 svm 등이 대회에서 1등을 했으나 AlexNet 이후 딥러닝 모델이 대회 1등을 놓친 적이 없다 224*224 이미지를 분류하는 CNN 왜 잘되는지 모르겠지만 인간을 모방한다니까 잘될 것 같다던 막연한 믿음의 유망주 딥러닝이 실제 성능을 발휘한 계기 2. 2013 DQN 딥마인드가 처음 개발한 알고리즘 그림에서 보이는 아타리 게임을 인간 수준으로 플레이할 수 있는 강화학습 알고리즘 아무것도 알려주지 않고 마음대로 플레이하게 놔두면, 처음엔 버벅거리다가 점점 스스로 게임을 이해하여 공략법을 익히고 실제로는 고수의 플레이를 보여준다 이후 딥마인드는 구글에 인수되어 알파고를 개발하였다 3. 2014 encoder/decoder 언어를 번역하는 아이..
1. word embedding sequence data의 정보단위인 단어들을 특정한 공간 상의 한 점, 벡터로 표현하는 기법 써야 하는 이유는 위에서도 서술했지만 딥러닝 모델들이 수치를 다루니까, 단어 그대로 넣을 수 없어서 그렇다 word embedding은 그 자체로도 하나의 머신러닝 기술이다. 텍스트 데이터, 공간상 차원 등을 학습 데이터로 주고 학습 후 다른 단어의 최적의 embedding vector를 구한다. 모든 embedding 기법을 관통하는 핵심아이디어는 비슷한 의미를 가지는 단어들은 공간 상에서 비슷한 위치에 두고 그렇지 않은 단어들은 먼 거리에 두어 단어들의 의미 유사도를 반영한 벡터 표현을 제공하는 것이다. ‘cat’ 과 ‘kitty’는 의미상 비슷하므로 서로 비슷한 위치에 두고..
1. stride filter가 매 스텝 convolution할 때마다 다음회에 얼마나 이동할지 2차원의 경우 stride는 2차원이다, (옆으로 얼마나 이동할지 * 아래로 얼마나 이동할지) 2. padding 일반적으로 input, output은 convolution 연산으로 크기가 서로 달라짐 보통은 output이 input보다 차원이 줄어든다 보통 convolution을 하면 input의 가장자리 빨간색 부분의 정보가 짤린다 그렇지만 input의 모든 정보를 가져오는게 좋지 않겠는가 그래서 input과 output의 크기가 동일했으면 하는 마음이 있다 가장자리 주변에 padding을 하여 모든 정보를 가져오도록 만든다 stride=1인 경우 적절한 크기의 패딩을 사용하면 반드시 input과 outp..
내 블로그 - 관리자 홈 전환 |
Q
Q
|
---|---|
새 글 쓰기 |
W
W
|
글 수정 (권한 있는 경우) |
E
E
|
---|---|
댓글 영역으로 이동 |
C
C
|
이 페이지의 URL 복사 |
S
S
|
---|---|
맨 위로 이동 |
T
T
|
티스토리 홈 이동 |
H
H
|
단축키 안내 |
Shift + /
⇧ + /
|
* 단축키는 한글/영문 대소문자로 이용 가능하며, 티스토리 기본 도메인에서만 동작합니다.