경사하강법(gradient descent)의 한계
1. 선형회귀분석 주어진 n개의 데이터에서 이들을 가장 잘 설명하는 선형모형을 찾는다 이전에는 무어펜로즈 역행렬을 이용하여 찾았다 무어펜로즈 역행렬을 이용하여 오차의 norm을 최소화하여 회귀계수 $\beta$를 찾는다. 무어펜로즈 역행렬은 컴퓨터 계산 시간 측면에서 비효율적이다 변수 수 m에 따라 $O(m^{2})$이라고 한다. 대안으로 경사하강법을 이용하여 회귀계수를 추정할 수 있다. 2. 선형회귀분석에서의 경사하강법 선형회귀분석은 위에서도 보였지만 \[y-X\beta\]의 norm을 최소화하는 $\beta$를 찾는것. 그러므로 \[y-X\beta\]의 norm을 $\beta$로 미분한 그래디언트 벡터를 구한다 그래디언트 벡터를 구하면 경사하강법을 이용하여 $\beta$에 그래디언트 벡터를 빼서 얻은..