1. KL divergence에 대하여 The Kullback–Leibler divergence (or information divergence, information gain, or relative entropy)은 두 확률분포를 비교하기 위한 방법이다. 데이터의 진짜 확률분포(true distribution)을 P라 하고 데이터가 따를 것 같다고 생각하는 우리가 예측한 확률분포 모형이 Q라한다면 Q에 대한 P의 The Kullback–Leibler divergence은 $$D _{KL} (P||Q)=E(log \frac{P}{Q} ) _{P} = \sum _{x \subset P} ^{} P(x)log \frac{P(x)}{Q(x)}= \sum _{x \subset P} ^{} P(x)logP(x)-..
1. Entropy는 무엇인가 self information이 하나의 사건에 대한 정보량이면 Entropy는 전체 확률분포가 가지는 정보량이라고 볼 수 있다. 확률변수 M의 Entropy는 M이 가질 수 있는 모든 사건의 평균적인 정보량으로 M의 정보량의 기댓값이다. H(M)=E(I(M))=∑mI(M)P(M=m)=−∑mP(M=m)logP(M=m)=−E(log(P(M)) 확률분포가 가지는 불확실성의 측도이고 확률분포가 가지는 모든 정보량이다. 2. 예시로 알아보는 Entropy 기계 X는 A, B, C, D를 각각 0.25의 확률로 출력 반면, 기계 Y는 A : 0.5, B: 0.125, C: 0.125, D: 0.25의 확률로 출력한다고 가..
1. 정보이론의 핵심 아이디어 잘 일어나지 않는 사건은 자주 발생하는 사건보다 정보량이 많다. 예를 들어보면 ‘아침에 해가 뜬다’는 정보는 누군가에게 알려줄 필요가 없을 정도로 정보 가치가 없다. 그렇지만 ‘오늘은 4시에 피어세션을 시작한다.’는 정보는 꼭 알아야한다는 측면에서 정보량이 많다고 말할 수 있다. 기본적으로 자주 발생하는 사건은 낮은 정보량을 가진다. 100퍼센트 발생이 보장된 사건은 내용에 무관하게 전혀 정보가 없다 덜 자주 발생하는 사건은 더 높은 정보량을 가진다 독립인 사건은 추가적인 정보량을 가진다. 동전을 던져 앞면이 두 번 나오는 사건에 대한 정보량은 동전을 던져 앞면이 한번 나오는 사건보다 정보량이 두배 많다 2. Shannon의 self information 확률변수 M이 어떤..
내 블로그 - 관리자 홈 전환 |
Q
Q
|
---|---|
새 글 쓰기 |
W
W
|
글 수정 (권한 있는 경우) |
E
E
|
---|---|
댓글 영역으로 이동 |
C
C
|
이 페이지의 URL 복사 |
S
S
|
---|---|
맨 위로 이동 |
T
T
|
티스토리 홈 이동 |
H
H
|
단축키 안내 |
Shift + /
⇧ + /
|
* 단축키는 한글/영문 대소문자로 이용 가능하며, 티스토리 기본 도메인에서만 동작합니다.