통계학 세상
close
프로필 배경
프로필 로고

통계학 세상

  • 분류 전체보기 (1475)
    • 다시보는 통계학 (28)
    • 딥러닝 (306)
      • 딥러닝 기초 (63)
      • Computer Vision (76)
      • NLP (59)
      • Machine Reading Comprehensi.. (21)
      • light weight modeling (47)
      • Graph (17)
      • recommendation system (7)
      • reinforcement learning (2)
      • LLM (6)
      • Deep Learning Specializatio.. (7)
      • Diffusion (1)
    • AI 논문 (45)
      • AI trend research (42)
      • 고전이 된 AI 논문 (3)
    • 데이터 분석 프로젝트 연습 (0)
    • 프로그래밍 (291)
      • 프로그래밍 개론 (7)
      • Python (79)
      • Java (15)
      • C++ (9)
      • C# (0)
      • 비전공자를 위한 자바스크립트 (8)
      • Pandas (10)
      • Numpy (8)
      • Pytorch (30)
      • SQL (23)
      • Unity&C# (27)
      • Tensorflow.js (2)
      • git 가이드 (10)
      • 비전공자를 위한 Web (4)
      • React (17)
      • node.js (17)
      • FastAPI (7)
      • docker & jenkins (10)
      • R 프로그래밍 (8)
    • 알고리즘 (496)
      • 알고리즘 일반 (61)
      • Java 기초 (22)
      • C++ 기초 (22)
      • 브루트포스 (22)
      • DFS BFS 정복기 (28)
      • 그래프 이론 정복기 (21)
      • 분리집합 (7)
      • 최단거리 알고리즘 (21)
      • 최소 스패닝 트리 (5)
      • 다이나믹 프로그래밍 (64)
      • 구현,시뮬레이션 (11)
      • 이분 탐색 (17)
      • 정렬 알고리즘 (9)
      • 그리디 알고리즘 (30)
      • 투 포인터 알고리즘 (9)
      • 누적 합 알고리즘 (14)
      • 문자열 알고리즘 (17)
      • 자료구조(스택,큐,해시맵) (13)
      • 슬라이딩 윈도우 (2)
      • 연결리스트 (3)
      • 분할 정복 (4)
      • 위상정렬 (3)
      • 세그먼트 트리 (14)
      • 유량 알고리즘 (1)
      • 이분 매칭 (2)
      • 고급 자료구조 (4)
      • 전처리 (1)
      • 게임이론 (8)
      • 비트마스킹 (7)
      • 애드 혹 알고리즘 (33)
      • 중간에서 만나기 (4)
      • 확률론 알고리즘 (3)
      • 선형대수학 알고리즘 (3)
      • 압축 알고리즘 (2)
      • 오프라인 쿼리 (1)
      • 정밀도 (3)
      • 재귀 연습장 (1)
      • 비둘기집 원리 (2)
      • 휴리스틱 (1)
      • 고급 알고리즘 (1)
      • 알고리즘 논문 (0)
    • 경쟁 프로그래밍 (22)
      • Atcoder (22)
    • 책 읽기 (79)
      • 비전공자도 이해할 수 있는 AI지식 (51)
      • 수학보다 데이터 문해력 (28)
    • 3D 모델링 (0)
      • blender (0)
    • 정수론 (74)
    • 선형대수학 (28)
    • 조합론 (11)
    • 정형데이터 (25)
    • 정보이론 (3)
    • Visualization (7)
    • 기하학 (29)
    • 컴퓨터과학(CS) (11)
    • 대수학 (4)
    • 데이터 해석 (6)
    • 금융 (1)
    • 읽을거리 (9)
  • 홈
  • 태그
  • 방명록
Numpy 기초 2편

Numpy 기초 2편

1. reshape 원소 개수는 바꾸지 않고 array의 shape를 변경함 원소 개수는 shape의 모든 축의 곱 np.array().reshape() dim에 -1을 포함시키면 그 부분은 파이썬이 데이터 수에 맞게 알아서 잡아준다 2. flatten 다차원 array를 1차원 array로 만들어준다 (2,2,4)의 3차원 array를 (16,)의 1차원 array로 flatten 시킴 원소의 수인 모든 shape의 곱이 16으로 일정해야함 3. indexing 리스트와는 다르게 [a,b]의 직관적인 indexing을 제공함 indexing으로 값 변경도 가능 0행 2열의 원소를 test_exampe[0,2]로 불러올 수 있음 0,0의 원소인 1을 test_example[0,0]=10으로 변경 가능 4..

  • format_list_bulleted 프로그래밍/Numpy
  • · 2021. 11. 27.
  • textsms
stack 필수 활용 기술 3

stack 필수 활용 기술 3

1. 문제 https://programmers.co.kr/learn/courses/30/lessons/12973 코딩테스트 연습 - 짝지어 제거하기 짝지어 제거하기는, 알파벳 소문자로 이루어진 문자열을 가지고 시작합니다. 먼저 문자열에서 같은 알파벳이 2개 붙어 있는 짝을 찾습니다. 그다음, 그 둘을 제거한 뒤, 앞뒤로 문자열을 이어 붙 programmers.co.kr 짝지어 제거하기는, 알파벳 소문자로 이루어진 문자열을 가지고 시작합니다. 먼저 문자열에서 같은 알파벳이 2개 붙어 있는 짝을 찾습니다. 그 다음, 그 둘을 제거한 뒤, 앞뒤로 문자열을 이어 붙입니다. 이 과정을 반복해서 문자열을 모두 제거한다면 짝지어 제거하기가 종료됩니다. 문자열 s가 주어졌을 때, 짝지어 제거하기를 성공적으로 수행할 수..

  • format_list_bulleted 알고리즘/알고리즘 일반
  • · 2021. 11. 27.
  • textsms
Numpy 기초 1편

Numpy 기초 1편

1. numpy 고성능 과학 계산용 패키지 matrix나 vector같은 array 연산의 사실상 표준 일반 리스트에 비해 빠르고 효율적 반복문 없이 배열 연산 처리를 지원 c,c++ 등 다른 언어와 통합 가능 import numpy as np 2. array에 대하여 행렬은 일반적으로 이차원 list를 이용하여 표현한다. 예를 들어 [[2,1],[3,2],[3,-1]]은 $$\begin{pmatrix} 2 & 1\\ 3 & 2\\ 3 & -1 \end{pmatrix}$$을 표현한다. 그러나 이렇게 하는 경우 다양한 행렬 계산이 어려워진다. 심지어 매우 큰 matrix에 대해 일일이 list로 표현해줄 것인가? 리스트는 심지어 메모리도 비효율적이다. 각각의 값이 모두 메모리 주소를 가지기 때문 3. ar..

  • format_list_bulleted 프로그래밍/Numpy
  • · 2021. 11. 27.
  • textsms
Pandas 기초 6편

Pandas 기초 6편

1. describe() numeric type을 요약해줌 문자형 데이터는 알아서 요약을 안해줌 2. unique() (series).unique() 해당 series의 중복을 제거하고 유일한 값들을 반환 3. 기본 수학 연산 sum,mean,min,max,count,var,median 등 기본 연산 지원 axis 가능 4. isnull() df.isnull()은 NaN인 곳을 찾아 True 아니면 False로 df.isnull().sum() 각 변수별 NaN의 개수를 구할 때 자주 씀 5. sort_values() df.sort_values( (by=)[열],ascending=) 지정된 열 기준으로 sorting 6. corr(),cov() .corr() 두 열간 상관계수 .cov() 두 열간 공분산 ..

  • format_list_bulleted 프로그래밍/Pandas
  • · 2021. 11. 25.
  • textsms
Pandas 기초 5편

Pandas 기초 5편

1. map 판다스의 series에도 각 요소에 함수를 적용시키는 map이 가능 series로 반환 위 그림은 series s1의 모든 요소에 함수 f를 적용시킨 map의 예시 모든 요소에 제곱을 수행하여 series로 반환함 series s1에 map을 수행해도 원본 s1은 그대로 있다 map을 활용하여 데이터를 교체하는 기법 map으로 dict를 넣으면 dict의 key를 index로 보고 해당 index에 value를 집어넣음 s1의 인덱스를 먼저 넣고 s2의 대응되는 인덱스의 값으로 넣는거임 df의 sex 열에 map을 활용하여 남자면 0 여자면 1을 대응시키는 one hot encoding을 수행 df.sex.unique()를 이용해 df.sex에는 male과 female밖에 없으니까 0 아니면..

  • format_list_bulleted 프로그래밍/Pandas
  • · 2021. 11. 25.
  • textsms
수학 공식을 활용한 알고리즘

수학 공식을 활용한 알고리즘

1. 문제 https://programmers.co.kr/learn/courses/30/lessons/86051 코딩테스트 연습 - 없는 숫자 더하기 0부터 9까지의 숫자 중 일부가 들어있는 배열 numbers가 매개변수로 주어집니다. numbers에서 찾을 수 없는 0부터 9까지의 숫자를 모두 찾아 더한 수를 return 하도록 solution 함수를 완성해주세요. 제한 programmers.co.kr 0부터 9까지의 숫자 중 일부가 들어있는 배열 numbers가 매개변수로 주어집니다. numbers에서 찾을 수 없는 0부터 9까지의 숫자를 모두 찾아 더한 수를 return하도록 solution 함수를 완성하세요 2. 제한사항 numbers의 길이는 1이상 9이하 numbers의 모든 수는 0이상 9이..

  • format_list_bulleted 알고리즘/알고리즘 일반
  • · 2021. 11. 25.
  • textsms
  • navigate_before
  • 1
  • ···
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • navigate_next
공지사항
전체 카테고리
  • 분류 전체보기 (1475)
    • 다시보는 통계학 (28)
    • 딥러닝 (306)
      • 딥러닝 기초 (63)
      • Computer Vision (76)
      • NLP (59)
      • Machine Reading Comprehensi.. (21)
      • light weight modeling (47)
      • Graph (17)
      • recommendation system (7)
      • reinforcement learning (2)
      • LLM (6)
      • Deep Learning Specializatio.. (7)
      • Diffusion (1)
    • AI 논문 (45)
      • AI trend research (42)
      • 고전이 된 AI 논문 (3)
    • 데이터 분석 프로젝트 연습 (0)
    • 프로그래밍 (291)
      • 프로그래밍 개론 (7)
      • Python (79)
      • Java (15)
      • C++ (9)
      • C# (0)
      • 비전공자를 위한 자바스크립트 (8)
      • Pandas (10)
      • Numpy (8)
      • Pytorch (30)
      • SQL (23)
      • Unity&C# (27)
      • Tensorflow.js (2)
      • git 가이드 (10)
      • 비전공자를 위한 Web (4)
      • React (17)
      • node.js (17)
      • FastAPI (7)
      • docker & jenkins (10)
      • R 프로그래밍 (8)
    • 알고리즘 (496)
      • 알고리즘 일반 (61)
      • Java 기초 (22)
      • C++ 기초 (22)
      • 브루트포스 (22)
      • DFS BFS 정복기 (28)
      • 그래프 이론 정복기 (21)
      • 분리집합 (7)
      • 최단거리 알고리즘 (21)
      • 최소 스패닝 트리 (5)
      • 다이나믹 프로그래밍 (64)
      • 구현,시뮬레이션 (11)
      • 이분 탐색 (17)
      • 정렬 알고리즘 (9)
      • 그리디 알고리즘 (30)
      • 투 포인터 알고리즘 (9)
      • 누적 합 알고리즘 (14)
      • 문자열 알고리즘 (17)
      • 자료구조(스택,큐,해시맵) (13)
      • 슬라이딩 윈도우 (2)
      • 연결리스트 (3)
      • 분할 정복 (4)
      • 위상정렬 (3)
      • 세그먼트 트리 (14)
      • 유량 알고리즘 (1)
      • 이분 매칭 (2)
      • 고급 자료구조 (4)
      • 전처리 (1)
      • 게임이론 (8)
      • 비트마스킹 (7)
      • 애드 혹 알고리즘 (33)
      • 중간에서 만나기 (4)
      • 확률론 알고리즘 (3)
      • 선형대수학 알고리즘 (3)
      • 압축 알고리즘 (2)
      • 오프라인 쿼리 (1)
      • 정밀도 (3)
      • 재귀 연습장 (1)
      • 비둘기집 원리 (2)
      • 휴리스틱 (1)
      • 고급 알고리즘 (1)
      • 알고리즘 논문 (0)
    • 경쟁 프로그래밍 (22)
      • Atcoder (22)
    • 책 읽기 (79)
      • 비전공자도 이해할 수 있는 AI지식 (51)
      • 수학보다 데이터 문해력 (28)
    • 3D 모델링 (0)
      • blender (0)
    • 정수론 (74)
    • 선형대수학 (28)
    • 조합론 (11)
    • 정형데이터 (25)
    • 정보이론 (3)
    • Visualization (7)
    • 기하학 (29)
    • 컴퓨터과학(CS) (11)
    • 대수학 (4)
    • 데이터 해석 (6)
    • 금융 (1)
    • 읽을거리 (9)
최근 글
인기 글
최근 댓글
태그
  • #백준
  • #머신러닝
  • #NLP
  • #코딩테스트
  • #딥러닝
  • #python
  • #알고리즘
  • #프로그래밍
  • #정수론
  • #파이썬
전체 방문자
오늘
어제
전체
Copyright © 쭈미로운 생활 All rights reserved.
Designed by JJuum

티스토리툴바