통계학 세상
close
프로필 배경
프로필 로고

통계학 세상

  • 분류 전체보기 (1475)
    • 다시보는 통계학 (28)
    • 딥러닝 (306)
      • 딥러닝 기초 (63)
      • Computer Vision (76)
      • NLP (59)
      • Machine Reading Comprehensi.. (21)
      • light weight modeling (47)
      • Graph (17)
      • recommendation system (7)
      • reinforcement learning (2)
      • LLM (6)
      • Deep Learning Specializatio.. (7)
      • Diffusion (1)
    • AI 논문 (45)
      • AI trend research (42)
      • 고전이 된 AI 논문 (3)
    • 데이터 분석 프로젝트 연습 (0)
    • 프로그래밍 (291)
      • 프로그래밍 개론 (7)
      • Python (79)
      • Java (15)
      • C++ (9)
      • C# (0)
      • 비전공자를 위한 자바스크립트 (8)
      • Pandas (10)
      • Numpy (8)
      • Pytorch (30)
      • SQL (23)
      • Unity&C# (27)
      • Tensorflow.js (2)
      • git 가이드 (10)
      • 비전공자를 위한 Web (4)
      • React (17)
      • node.js (17)
      • FastAPI (7)
      • docker & jenkins (10)
      • R 프로그래밍 (8)
    • 알고리즘 (496)
      • 알고리즘 일반 (61)
      • Java 기초 (22)
      • C++ 기초 (22)
      • 브루트포스 (22)
      • DFS BFS 정복기 (28)
      • 그래프 이론 정복기 (21)
      • 분리집합 (7)
      • 최단거리 알고리즘 (21)
      • 최소 스패닝 트리 (5)
      • 다이나믹 프로그래밍 (64)
      • 구현,시뮬레이션 (11)
      • 이분 탐색 (17)
      • 정렬 알고리즘 (9)
      • 그리디 알고리즘 (30)
      • 투 포인터 알고리즘 (9)
      • 누적 합 알고리즘 (14)
      • 문자열 알고리즘 (17)
      • 자료구조(스택,큐,해시맵) (13)
      • 슬라이딩 윈도우 (2)
      • 연결리스트 (3)
      • 분할 정복 (4)
      • 위상정렬 (3)
      • 세그먼트 트리 (14)
      • 유량 알고리즘 (1)
      • 이분 매칭 (2)
      • 고급 자료구조 (4)
      • 전처리 (1)
      • 게임이론 (8)
      • 비트마스킹 (7)
      • 애드 혹 알고리즘 (33)
      • 중간에서 만나기 (4)
      • 확률론 알고리즘 (3)
      • 선형대수학 알고리즘 (3)
      • 압축 알고리즘 (2)
      • 오프라인 쿼리 (1)
      • 정밀도 (3)
      • 재귀 연습장 (1)
      • 비둘기집 원리 (2)
      • 휴리스틱 (1)
      • 고급 알고리즘 (1)
      • 알고리즘 논문 (0)
    • 경쟁 프로그래밍 (22)
      • Atcoder (22)
    • 책 읽기 (79)
      • 비전공자도 이해할 수 있는 AI지식 (51)
      • 수학보다 데이터 문해력 (28)
    • 3D 모델링 (0)
      • blender (0)
    • 정수론 (74)
    • 선형대수학 (28)
    • 조합론 (11)
    • 정형데이터 (25)
    • 정보이론 (3)
    • Visualization (7)
    • 기하학 (29)
    • 컴퓨터과학(CS) (11)
    • 대수학 (4)
    • 데이터 해석 (6)
    • 금융 (1)
    • 읽을거리 (9)
  • 홈
  • 태그
  • 방명록
파이썬의 예외 처리(try except)

파이썬의 예외 처리(try except)

프로그램을 수행하면서 예상하지 못한 여러가지 일들이 발생할 수 있는데 이를 처리하기 위함 예외에는 예상이 가능한 예외와 예상이 불가능한 예외가 있음 1) try~except try:(예외 발생 가능한 코드) ~  except (발생가능한 에러종류):(예외 발생시 대응 가능한 코드)~ ZeroDivisionError말고 다른 에러를 적으면 프로그램 수행이 안됨 파이썬에서 기본적으로 제공하는 indexerror, nameerror, zerodivisionerror, valueerror, filenotfounderror 등이 있음   indexerror를 e로 받아서 print(e)하면 그 정보를 출력해줌 무슨 에러가 발생할지 모르면 지정하지 않아도 알아서 수행해줌  ..

  • format_list_bulleted 프로그래밍/Python
  • · 2021. 12. 21.
  • textsms
몬테카를로(Monte-Carlo) 시뮬레이션에 대한 이론적인 설명

몬테카를로(Monte-Carlo) 시뮬레이션에 대한 이론적인 설명

1. 목표 직사각형 안에 어떤 도형을 그려놓자. 빨간색 영역의 넓이는 얼마인지 알고 싶다. 2. 기본적인 원리 만약, 위와 같은 직사각형에서 임의의 난수를 하나 뽑는다고 하자. 그 난수가 빨간색 영역인 HIT에 들어갈 확률은 얼마인가? 직사각형의 넓이는 $c(b-a)$이고 빨간색 영역의 넓이를 $S$라고 하면, 기하학적 확률의 원리에 의해 $$p= \frac{(난수가 \; 목표로 \; 하는 \; 빨간색 \; 영역의 \; 넓이)}{(난수가 \; 있을 \; 수 \; 있는 \; 전체 \; 영역의 \; 넓이)} = \frac{S}{c(b-a)}$$ 그러나 $S$를 모른다는 것이 중요하다. 즉 우리는 p값도 알 수가 없다 그런데 $p$값을 다른 방법으로 추정해볼 수 있는데 위와 같은 직사각형 위에서 $N$개의 난..

  • format_list_bulleted 다시보는 통계학
  • · 2021. 12. 21.
  • textsms
enumerate와 zip

enumerate와 zip

1) enumerate 리스트 element iteration할 시 index와 value를 같이 추출하는 기법 사전을 comprehension하여 생성할 수 있다 그림1은 enumerate를 이용한 dictionary comprehension의 예시를 보여준다. index : value 형태가 생각하기 쉽지만 value : index 형태로 생각할줄도 알아야함 자주 쓰니까 2) zip 두개 이상의 리스트를 병렬적으로 추출하는 기법 추출하면 원소들을 튜플로 묶어줌 이차원 행렬에서 열(column)을 추출할 때 유용하다

  • format_list_bulleted 프로그래밍/Python
  • · 2021. 12. 19.
  • textsms
Python의 리스트(list)에 대하여

Python의 리스트(list)에 대하여

다양한 타입의 데이터를 하나의 자료로 표현할 수 있는 시퀀스 자료형  1) 리스트 슬라이싱(slicing) 리스트의 값들은 각각에 해당하는 주소(offset)를 갖는다 그 주소를 기반으로 리스트의 부분값을 슬라이싱하여 가져올 수 있는 기법  index가 처음부터 0,1,2,...로 가는건 누구나 알지만 거꾸로 -1,-2,-3...으로 가는건 아무나 아는 것이 아니다   2) concatenation, repeat, in 리스트도 덧셈 연산으로 concatenation 가능 *연산은 리스트를 반복함(repeat) in연산은 해당 원소가 리스트에 포함되어 있는지 확인  3) change element 리스트 내 원소를 변경 바꾸고 싶은 원소의 인덱스 i..

  • format_list_bulleted 프로그래밍/Python
  • · 2021. 12. 19.
  • textsms
urlopen을 할 때 HTTP Error 403: Forbidden error가 난다면

urlopen을 할 때 HTTP Error 403: Forbidden error가 난다면

데이터 수집을 하기 위해 크롤링을 수행하는데 from bs4 import BeautifulSoup from urllib.request import urlopen url = 'https://www.chicagomag.com/Chicago-Magazine/November-2012/Best-Sandwiches-Chicago/' html = urlopen(url) soup = BeautifulSoup(html, 'html.parser') soup 다음과 같이 에러가 난다면 이런 경우 다음과 같이 headers를 다음과 같이 추가해서 크롤링 중이라는 것을 숨겨서 크롤링을 할 수 있다고 한다 from bs4 import BeautifulSoup from urllib.request import urlopen, Req..

  • format_list_bulleted 프로그래밍/Python
  • · 2021. 12. 19.
  • textsms
list comprehension

list comprehension

일반적인 for loop보다 빠르게 리스트를 생성할 수 있다 위에가 일반적인 for loop 리스트 생성 아래는 list comprehension으로 생성 list comprehension이 조금 더 빠르다 1) 기본형 [ x for x in ] 에서 x를 뽑아서 x를 리스트에 넣어서 생성 2) 이중for문형 [ x+y for x in for y in ] 에서 x를 뽑은 뒤에 에서 y하나씩 뽑아서 x+y를 넣는다 바꿔말하면 for x in for y in .append(x+y) 3) 조건문 if [x for x in if ] 에서 x를 하나씩 뽑는데 에 맞는 경우만 리스트에 넣어준다 4) 조건문 if~else if만 쓰면 for문 뒤에 써야하는데 if~else를 쓰고 싶으면 for문 앞에 쓴다 [x if..

  • format_list_bulleted 프로그래밍/Python
  • · 2021. 12. 18.
  • textsms
  • navigate_before
  • 1
  • ···
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • ···
  • 18
  • navigate_next
공지사항
전체 카테고리
  • 분류 전체보기 (1475)
    • 다시보는 통계학 (28)
    • 딥러닝 (306)
      • 딥러닝 기초 (63)
      • Computer Vision (76)
      • NLP (59)
      • Machine Reading Comprehensi.. (21)
      • light weight modeling (47)
      • Graph (17)
      • recommendation system (7)
      • reinforcement learning (2)
      • LLM (6)
      • Deep Learning Specializatio.. (7)
      • Diffusion (1)
    • AI 논문 (45)
      • AI trend research (42)
      • 고전이 된 AI 논문 (3)
    • 데이터 분석 프로젝트 연습 (0)
    • 프로그래밍 (291)
      • 프로그래밍 개론 (7)
      • Python (79)
      • Java (15)
      • C++ (9)
      • C# (0)
      • 비전공자를 위한 자바스크립트 (8)
      • Pandas (10)
      • Numpy (8)
      • Pytorch (30)
      • SQL (23)
      • Unity&C# (27)
      • Tensorflow.js (2)
      • git 가이드 (10)
      • 비전공자를 위한 Web (4)
      • React (17)
      • node.js (17)
      • FastAPI (7)
      • docker & jenkins (10)
      • R 프로그래밍 (8)
    • 알고리즘 (496)
      • 알고리즘 일반 (61)
      • Java 기초 (22)
      • C++ 기초 (22)
      • 브루트포스 (22)
      • DFS BFS 정복기 (28)
      • 그래프 이론 정복기 (21)
      • 분리집합 (7)
      • 최단거리 알고리즘 (21)
      • 최소 스패닝 트리 (5)
      • 다이나믹 프로그래밍 (64)
      • 구현,시뮬레이션 (11)
      • 이분 탐색 (17)
      • 정렬 알고리즘 (9)
      • 그리디 알고리즘 (30)
      • 투 포인터 알고리즘 (9)
      • 누적 합 알고리즘 (14)
      • 문자열 알고리즘 (17)
      • 자료구조(스택,큐,해시맵) (13)
      • 슬라이딩 윈도우 (2)
      • 연결리스트 (3)
      • 분할 정복 (4)
      • 위상정렬 (3)
      • 세그먼트 트리 (14)
      • 유량 알고리즘 (1)
      • 이분 매칭 (2)
      • 고급 자료구조 (4)
      • 전처리 (1)
      • 게임이론 (8)
      • 비트마스킹 (7)
      • 애드 혹 알고리즘 (33)
      • 중간에서 만나기 (4)
      • 확률론 알고리즘 (3)
      • 선형대수학 알고리즘 (3)
      • 압축 알고리즘 (2)
      • 오프라인 쿼리 (1)
      • 정밀도 (3)
      • 재귀 연습장 (1)
      • 비둘기집 원리 (2)
      • 휴리스틱 (1)
      • 고급 알고리즘 (1)
      • 알고리즘 논문 (0)
    • 경쟁 프로그래밍 (22)
      • Atcoder (22)
    • 책 읽기 (79)
      • 비전공자도 이해할 수 있는 AI지식 (51)
      • 수학보다 데이터 문해력 (28)
    • 3D 모델링 (0)
      • blender (0)
    • 정수론 (74)
    • 선형대수학 (28)
    • 조합론 (11)
    • 정형데이터 (25)
    • 정보이론 (3)
    • Visualization (7)
    • 기하학 (29)
    • 컴퓨터과학(CS) (11)
    • 대수학 (4)
    • 데이터 해석 (6)
    • 금융 (1)
    • 읽을거리 (9)
최근 글
인기 글
최근 댓글
태그
  • #알고리즘
  • #정수론
  • #NLP
  • #python
  • #코딩테스트
  • #파이썬
  • #딥러닝
  • #머신러닝
  • #프로그래밍
  • #백준
전체 방문자
오늘
어제
전체
Copyright © 쭈미로운 생활 All rights reserved.
Designed by JJuum

티스토리툴바