통계학 세상
close
프로필 배경
프로필 로고

통계학 세상

  • 분류 전체보기 (1475)
    • 다시보는 통계학 (28)
    • 딥러닝 (306)
      • 딥러닝 기초 (63)
      • Computer Vision (76)
      • NLP (59)
      • Machine Reading Comprehensi.. (21)
      • light weight modeling (47)
      • Graph (17)
      • recommendation system (7)
      • reinforcement learning (2)
      • LLM (6)
      • Deep Learning Specializatio.. (7)
      • Diffusion (1)
    • AI 논문 (45)
      • AI trend research (42)
      • 고전이 된 AI 논문 (3)
    • 데이터 분석 프로젝트 연습 (0)
    • 프로그래밍 (291)
      • 프로그래밍 개론 (7)
      • Python (79)
      • Java (15)
      • C++ (9)
      • C# (0)
      • 비전공자를 위한 자바스크립트 (8)
      • Pandas (10)
      • Numpy (8)
      • Pytorch (30)
      • SQL (23)
      • Unity&C# (27)
      • Tensorflow.js (2)
      • git 가이드 (10)
      • 비전공자를 위한 Web (4)
      • React (17)
      • node.js (17)
      • FastAPI (7)
      • docker & jenkins (10)
      • R 프로그래밍 (8)
    • 알고리즘 (496)
      • 알고리즘 일반 (61)
      • Java 기초 (22)
      • C++ 기초 (22)
      • 브루트포스 (22)
      • DFS BFS 정복기 (28)
      • 그래프 이론 정복기 (21)
      • 분리집합 (7)
      • 최단거리 알고리즘 (21)
      • 최소 스패닝 트리 (5)
      • 다이나믹 프로그래밍 (64)
      • 구현,시뮬레이션 (11)
      • 이분 탐색 (17)
      • 정렬 알고리즘 (9)
      • 그리디 알고리즘 (30)
      • 투 포인터 알고리즘 (9)
      • 누적 합 알고리즘 (14)
      • 문자열 알고리즘 (17)
      • 자료구조(스택,큐,해시맵) (13)
      • 슬라이딩 윈도우 (2)
      • 연결리스트 (3)
      • 분할 정복 (4)
      • 위상정렬 (3)
      • 세그먼트 트리 (14)
      • 유량 알고리즘 (1)
      • 이분 매칭 (2)
      • 고급 자료구조 (4)
      • 전처리 (1)
      • 게임이론 (8)
      • 비트마스킹 (7)
      • 애드 혹 알고리즘 (33)
      • 중간에서 만나기 (4)
      • 확률론 알고리즘 (3)
      • 선형대수학 알고리즘 (3)
      • 압축 알고리즘 (2)
      • 오프라인 쿼리 (1)
      • 정밀도 (3)
      • 재귀 연습장 (1)
      • 비둘기집 원리 (2)
      • 휴리스틱 (1)
      • 고급 알고리즘 (1)
      • 알고리즘 논문 (0)
    • 경쟁 프로그래밍 (22)
      • Atcoder (22)
    • 책 읽기 (79)
      • 비전공자도 이해할 수 있는 AI지식 (51)
      • 수학보다 데이터 문해력 (28)
    • 3D 모델링 (0)
      • blender (0)
    • 정수론 (74)
    • 선형대수학 (28)
    • 조합론 (11)
    • 정형데이터 (25)
    • 정보이론 (3)
    • Visualization (7)
    • 기하학 (29)
    • 컴퓨터과학(CS) (11)
    • 대수학 (4)
    • 데이터 해석 (6)
    • 금융 (1)
    • 읽을거리 (9)
  • 홈
  • 태그
  • 방명록
Pandas 기초 4편

Pandas 기초 4편

1. drop df.drop((index_number))로 index_number에 해당하는 행 제거 인덱스 리스트를 넣어 지정하는 행 제거(fancy index) axis 연산도 가능 axis=1로 해서 city와 state에 해당하는 column을 제거함 --------------------------------------------------------------------------------------------------------------------------- 2. dataframe operation index를 기준으로 연산을 수행함 겹치는 index가 없는 경우에는 NaN을 집어넣음 dataframe은 column index도 고려함 fill_value= 으로 겹치는 부분이 없는 곳이..

  • format_list_bulleted 프로그래밍/Pandas
  • · 2021. 11. 24.
  • textsms
Pandas 기초 3편

Pandas 기초 3편

1. delete column 1-1) del del df[‘debt’] 로 ‘debt’ 열을 삭제함 del은 열의 메모리 주소를 삭제함 1-2) df.drop() df.drop((열이름),axis=)으로도 삭제가 가능하다 그러나 얘는 원본을 변화시키진 않음 새로 할당시켜야함 2. column selection 1개 열을 선택할 때는 df[‘account’]로 문자열만 들어가지만 2개 이상의 열을 선택할때는 반드시 리스트가 들어가야한다 예를 들어 df[ [‘account’,’street’,’state’] ] 위 그림을 보면 1개 열을 선택하더라도 df['account']와 df[['account']] 차이가 있다 전자는 series로 가져오지만 후자는 dataframe으로 가져온다 ------------..

  • format_list_bulleted 프로그래밍/Pandas
  • · 2021. 11. 24.
  • textsms
Pandas 기초 2편

Pandas 기초 2편

1. dataframe data table 전체를 나타내는 object Series의 모임 row index 뿐만 아니라 column index도 가진다 각 column은 서로 다른 데이터 타입이 될 수 있다 기본적으로 “column_name:(data)” 형태의 dict type을 pd.DataFrame(dict,columns=[column명])에 넣어 만든다 columns=에 특정 column만 지정할 수도 있고 새로운 column을 추가할수도 있다 raw_data에서 넣고 싶지 않은 column은 지정하지 않으면 데이터프레임에 안들어간다 물론 raw_data에 data가 없는 column명을 넣을 수도 있는데 그러면 데이터프레임에 NaN 들어감 데이터프레임에서 하나의 열만 선택하는 방법으로 df[(..

  • format_list_bulleted 프로그래밍/Pandas
  • · 2021. 11. 23.
  • textsms
Pandas 기초 1편

Pandas 기초 1편

1. pandas 개요 구조화된 데이터 처리를 지원하는 파이썬계의 엑셀 numpy와 통합하여 통계분석, 인덱싱, 연산, 전처리 등 지원 import pandas as pd로 호출 2. 데이터 프레임 기본 용어 데이터의 전체 집합이 data table, sample 변수는 feature, column, attribute, field 각 행, 개별 데이터들은 instance, row, tuple 3. read_csv pd.read_csv(‘파일위치’,sep=,header=(첫줄을 데이터로 보면 False 변수로 보면 True) df.head(n=) n행만큼 데이터 출력, 기본값은 n=5 sep=’\s+’에서 \s는 single space로 빈칸을 뜻하고 +로 빈칸수가 무작위로 나올때를 뜻함. 데이터가 나눠진..

  • format_list_bulleted 프로그래밍/Pandas
  • · 2021. 11. 23.
  • textsms

시간 다루기

1. 문제 이벤트 시작 날짜와 이벤트가 끝나는 날짜, 고객의 접속 기록이 주어진다. 모든 날짜는 mm/dd 형태로 주어지는데 이벤트 시작 날짜는 mm/dd day 형태로 주어진다. day는 'MON','TUE','WED','THU','FRI','SAT','SUN' 중 하나로 주어진다. 고객의 접속 기록은 시작 날짜와 끝나는 날짜 사이에서 접속한 날짜를 리스트 형태로 주어진다. 2월은 항상 28일로 끝난다고 가정한다. 날짜는 01/01부터 12/31까지 주어지고 시작 날짜가 끝나는 날짜보다 늦는다던지 형식에 맞지 않는 경우는 주어지지 않는다 이 때 고객이 평일에 연속해서 접속한 기록의 최대 일수를 구한다면? 예를 들어 24일이 목요일 일때, 24,25,26,28,29,31 접속했다고 가정하자. 일요일인 2..

  • format_list_bulleted 알고리즘/알고리즘 일반
  • · 2021. 11. 22.
  • textsms
체스판에서 정사각형의 개수

체스판에서 정사각형의 개수

1. 문제 n개의 점이 일정한 간격으로 각 줄마다 n개의 줄이 존재하는 n*n 체스판이 있다고 하자. n*n 체스판에서 서로 다른 네개의 점을 이어 만든 정사각형의 개수는 몇개일까? 선분을 이을 때 선분 중간에 존재하는 점은 개수로 세지 않는다. 예를 들어 n=3이면 6개 존재하고 n=4이면 20개 존재한다. n은 2 이상의 자연수 2. 풀이 이런 문제가 나오면 규칙이 있겠구나 이렇게 생각하고 규칙을 찾으면 된다 프로그래밍을 해서 정사각형을 일일이 세도록 만들수는 없을거니까 근데 사실 규칙을 찾을려면 정사각형의 개수를 정확하게 세야하는데 그것이 절대 쉬운건 아니다 규칙을 찾겠다는 생각부터 한 것이 분명 한단계 발전한거 2가지로 나눠 생각할 수 있다 빨간색으로 된 격자형 정사각형이랑 파란색으로 된 기울어진..

  • format_list_bulleted 알고리즘/알고리즘 일반
  • · 2021. 11. 22.
  • textsms
  • navigate_before
  • 1
  • ···
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • navigate_next
공지사항
전체 카테고리
  • 분류 전체보기 (1475)
    • 다시보는 통계학 (28)
    • 딥러닝 (306)
      • 딥러닝 기초 (63)
      • Computer Vision (76)
      • NLP (59)
      • Machine Reading Comprehensi.. (21)
      • light weight modeling (47)
      • Graph (17)
      • recommendation system (7)
      • reinforcement learning (2)
      • LLM (6)
      • Deep Learning Specializatio.. (7)
      • Diffusion (1)
    • AI 논문 (45)
      • AI trend research (42)
      • 고전이 된 AI 논문 (3)
    • 데이터 분석 프로젝트 연습 (0)
    • 프로그래밍 (291)
      • 프로그래밍 개론 (7)
      • Python (79)
      • Java (15)
      • C++ (9)
      • C# (0)
      • 비전공자를 위한 자바스크립트 (8)
      • Pandas (10)
      • Numpy (8)
      • Pytorch (30)
      • SQL (23)
      • Unity&C# (27)
      • Tensorflow.js (2)
      • git 가이드 (10)
      • 비전공자를 위한 Web (4)
      • React (17)
      • node.js (17)
      • FastAPI (7)
      • docker & jenkins (10)
      • R 프로그래밍 (8)
    • 알고리즘 (496)
      • 알고리즘 일반 (61)
      • Java 기초 (22)
      • C++ 기초 (22)
      • 브루트포스 (22)
      • DFS BFS 정복기 (28)
      • 그래프 이론 정복기 (21)
      • 분리집합 (7)
      • 최단거리 알고리즘 (21)
      • 최소 스패닝 트리 (5)
      • 다이나믹 프로그래밍 (64)
      • 구현,시뮬레이션 (11)
      • 이분 탐색 (17)
      • 정렬 알고리즘 (9)
      • 그리디 알고리즘 (30)
      • 투 포인터 알고리즘 (9)
      • 누적 합 알고리즘 (14)
      • 문자열 알고리즘 (17)
      • 자료구조(스택,큐,해시맵) (13)
      • 슬라이딩 윈도우 (2)
      • 연결리스트 (3)
      • 분할 정복 (4)
      • 위상정렬 (3)
      • 세그먼트 트리 (14)
      • 유량 알고리즘 (1)
      • 이분 매칭 (2)
      • 고급 자료구조 (4)
      • 전처리 (1)
      • 게임이론 (8)
      • 비트마스킹 (7)
      • 애드 혹 알고리즘 (33)
      • 중간에서 만나기 (4)
      • 확률론 알고리즘 (3)
      • 선형대수학 알고리즘 (3)
      • 압축 알고리즘 (2)
      • 오프라인 쿼리 (1)
      • 정밀도 (3)
      • 재귀 연습장 (1)
      • 비둘기집 원리 (2)
      • 휴리스틱 (1)
      • 고급 알고리즘 (1)
      • 알고리즘 논문 (0)
    • 경쟁 프로그래밍 (22)
      • Atcoder (22)
    • 책 읽기 (79)
      • 비전공자도 이해할 수 있는 AI지식 (51)
      • 수학보다 데이터 문해력 (28)
    • 3D 모델링 (0)
      • blender (0)
    • 정수론 (74)
    • 선형대수학 (28)
    • 조합론 (11)
    • 정형데이터 (25)
    • 정보이론 (3)
    • Visualization (7)
    • 기하학 (29)
    • 컴퓨터과학(CS) (11)
    • 대수학 (4)
    • 데이터 해석 (6)
    • 금융 (1)
    • 읽을거리 (9)
최근 글
인기 글
최근 댓글
태그
  • #백준
  • #정수론
  • #python
  • #머신러닝
  • #파이썬
  • #딥러닝
  • #알고리즘
  • #프로그래밍
  • #코딩테스트
  • #NLP
전체 방문자
오늘
어제
전체
Copyright © 쭈미로운 생활 All rights reserved.
Designed by JJuum

티스토리툴바