Loading...
2022. 5. 13. 01:28

transformer에 사용된 positional encoding에 대하여

1. block based model encoding의 마지막 단계로 residual connection, layer normalization 결과를 feed forward network라는 신경망에 넣어 다시 한번 변환을 거친다. 근데 특별히 왜 했다는 이유는 없는듯?? feed forward network후에도 residual connection을 수행하고 layer normalization을 수행하여 최종적인 encoder의 output인 hidden vector를 얻는다. 2. positional encoding 지금까지 연산의 결과는 사실 sequence의 순서 정보를 전혀 고려하지않았다. 직관적으로 당연하다. x1,x2,x3의 q,k,v를 한번에 만들어서 이것으로 attention을 수행하면서..

2022. 5. 5. 19:03

transformer에 사용된 residual connection과 layer normalization

1. residual connection self attention 구조하에 당시 좋은 성능 향상 기법인 residual add connection, layer normalization을 채택했다. input $X_{t}$의 encoding 결과로 $h_{t}$라는 hidden vector를 얻고 싶은데 multi head attention이 학습하는 결과는$h_{t}-X_{t}$라고 하는 것이며 이 결과에 input $X_{t}$를 그대로 더하여 $h_{t}$라는 목표하는 hidden vector를 얻는다. input의 (1,4)의 multi head attention 결과로 얻은 (2,3)에 단순히 더하여 (3,7)이라는 벡터를 얻는 과정이 residual connection이다. 입력 input과 ..

2022. 5. 3. 18:55

transformer의 메모리 사용량 알아보기

1. layer의 계산적인 측면 self attention의 layer의 계산적인 측면에서 본다면 input sequence의 길이가 n이고 hidden vector의 차원이 d일때 Q는 n*d차원이고 $K^{T}$ 는 d*n차원이므로 $O(n^{2}d)$ RNN은 d차원의 $h_{t-1}$이 $h_{t}$로 변환되기위해서는 $W_{hh}$라는 d*d행렬을 곱하여 계산되는데 input sequence의 길이 n에 대하여 $O(nd^{2})$ input sequence의 길이 n과 hidden vector의 차원 d는 의미적으로 큰 차이가 있는데 hidden vector의 차원은 hyperparameter로 선택할수있는 값이다. 그러나 input sequence는 선택할수 없는 값으로 데이터의 길이에 따라..

2022. 5. 2. 21:02

multi-head attentiond 개념 알아보고 간단하게 구현해보기

지금까지 이야기한 것은 word embedding vector들의 self attention을 단 1번만 수행했다는 점인데 이것을 확장하여 여러번 수행하고 싶다는 것이다. 왜 여러번 수행해야할까? 단 1번의 self attention은 1가지 측면에서만 word들의 attention 측면을 고려하지만 필요에따라 attention 측면을 여러 방면에서 수행할 필요가 있다. 특히 매우 긴 문장의 경우 ‘I went to the school. I studied hard. I came back home. I took the rest.’를 생각해보자. 이 문장을 해석하기 위해 단어 I에 대해서 고려해야할 대상은 went, studied, came, took 등 동사 측면도 있지만 그것의 대상이되는 school, ..

2022. 5. 1. 21:35

scaled dot product attention

우리는 $softmax(QK^{T})V$로 attention을 구했지만 논문에서는 scaled dot product attention을 제안했다. key,query matrix의 차원 $d_{k}$의 제곱근으로 $QK^{T}$를 나눠줬다. 왜 그랬는지 생각해보자. query와 key의 내적은 언제나 하나의 scalar지만 query,key의 차원 $d_{k}$가 충분히 크다면 내적이 당연히 커진다는 점에 주목했다. 그러면 softmax function이 gradient를 극도로 낮게 만드는 영역이 존재한다는 것이다. We suspect that for large values of $d_{k}$, the dot products grow large in magnitude, pushing the softmax..

2022. 4. 28. 21:28

예시와 그림으로 이해하는 self attention의 원리

1. 예시로 알아보는 self attention hidden state vector를 만들고자 하는 x1의 query를 q1으로 생성 1에서 x1의 query q1와 x1,x2,x3의 key k1,k2,k3 각각의 내적으로 score를 계산 (3.8,-0.2,5,9) softmax를 취하여 어느 벡터에 집중할지 가중치를 계산 (0.2,0.1,0.7) 가중치인 score와 x1,x2,x3의 value v1,v2,v3의 weighted sum을 구한다. 즉 x1의 hidden vector h1=0.2v1+0.1v2+0.7v3으로 구해진다. 이러면 이제 x1,x2,x3를 학습이 가능한 weight matrix인 $W^{Q}, W^{K}, W^{V}$로 변환하여 얻은 query,key,value를 이용하였는데 ..