L1 regularization(Lasso)과 L2 regularization(Ridge)
L1 regularization과 L2 regularization은 모형의 복잡도인 parameter에 penalty를 주는 방식이다. L1, L2라는 용어에서 알 수 있다시피 loss function 공부하면서 짐작할 수 있는데 L1 regularization은 L1 norm인 절댓값 합을 말하는 것 일 테고 Lasso라고도 부른다. L2 regularization은 제곱 합을 말하는 것이고 Ridge라고도 부른다. 기본적으로 regularization하면 생각나는 것은 $$cost = basic \; loss + regularization$$ regularization term을 구성하는 방법은 neural network의 parameter를 이용한다. 그 parameter가 $W$라고 한다면 $$\..