Loading...
2024. 4. 15. 22:43

간단하게 살펴보는 여러가지 GAN

GAN은 그 아이디어가 나온 뒤로 1~2년만에 급격하게 후속논문이 등장했다 그런데 DALL-E가 transformer로 엄청난 generation을 했는데 generation 문제에서 GAN이 정답이 아닐 수 있다는 것이다 1. DCGAN 이미지를 discriminator할 때는 Convolution해가면서 마지막에 generating할 때는 deconvolution으로 생성했다는 것 같다 2. Info-GAN Generation에 class 정보도 집어넣으면서 특정 class에 집중할 수 있게 해준다는거?? 3. Text2Image 문장이 주어지면 그것에 맞는 이미지를 생성한다 4. Puzzle-GAN 이미지의 subpatch를 넣으면 원래 이미지를 복원한다 5. CycleGAN 두 이미지간 domai..

2024. 4. 7. 03:02

closed book question answering 개념 이해하기

1. MRC와 ODQA는 무슨차이인가 MRC는 문서가 주어지고 그에 대한 질문이 함께 주어지면 모델이 문서를 읽고 질문에 대한 답을 내는 방식 ODQA는 문서가 주어지지 않았는데 질문이 주어지면 질문과 관련된 문서를 찾고 그 문서로부터 모델이 질문에 대한 답을 내는 방식 2. open domain vs. open book vs. closed book open domain은 질문이 주어질 때 관련된 문서를 찾아 읽고 질문에 답을 내는 task 자체를 나타냄 open book은 질문을 던졌을 때 모델이 질문에 답하기 위해 ‘책’이라고 할 수 있는 거대한 corpus를 접근하게 하는것 closed book은 corpus없이 질문을 받으면 모델이 가지고 있는 사전지식만을 활용하여 정답을 냄 3. core ide..

2024. 4. 7. 02:51

T5 모델 간단하게 알아보기

1. introduction text-to-text format을 적극적으로 밀었던 사실상 첫번째 model? BART랑 유사하면서도 text-to-text format을 활용하여 거의 모든 자연어처리 문제를 text-to-text format으로 해결하자고 제안했다 자세한 부분은 조금 다르겠지만 seq-to-seq original transformer와 유사한 구조를 사용했다 2. pre-training 다양한 모델 구조, 다양한 사전학습목표, 방대한 사전학습용 데이터셋, 다양한 fine tuning 방법등을 마련하여 체계적으로 실험을 수행 당연하지만 이들 중 가장 좋은 방식을 선택하여 방대한 규모의 모델을 학습시킴 BERT나 BART와 마찬가지로 T5같은 모델을 방대한 언어에 사전학습시켜서 fine-..

2024. 4. 6. 03:40

image data 특징 간단하게

1. image 시각적인 인식을 표현한, 혹은 묘사한 인공물(artifact) 시각적인 인식이라는 것은 컴퓨터는 어떻게 표현하는가? 컴퓨터가 이미지를 이해하는 방식을 알고 있어야 이미지를 넣어 모델링하고 분류하는 class를 만들 수 있을 것 2. pixel 이미지를 표현하는 최소단위 Red, Green, Blue의 값이 어느정도 있느냐에 따라 pixel이 가지는 정보, 색깔이 표현 pixel이 많이 모여 하나의 이미지를 이룬다 3. image 저장 방식 width, height, channel 차원의 각 pixel의 R,G,B 값의 array 형태로 저장 channel은 R,G,B 3개 뿐만 아니라 그 이상 4개인 경우도 있다 R,G,B는 0~255까지 dtype = uint8은 unsigned int..

2024. 4. 4. 03:16

text-to-text format 방법론 간단하게

1. motivation GPT-2로 closed question answering의 가능성을 본 이후로 등장한 방법론 closed question answering는 generation MRC와 유사하다. 단, 둘의 차이라면 전자는 지문없이 질문만 들어간다 closed question answering도 BART같은 seq-to-seq transformer기반의 모델을 사용함 text-to-text format은 그 이름처럼 모든 종류의 NLP task를 text에서 text로 mapping하는 방식으로 치환하겠다는 방법론 input text 앞에 task에 대한 설명을 붙여준다. 그러면 모델이 처음 보는 task더라도 가지고 있는 언어 지식만으로 task를 이해하여 수행한 output을 출력할 수 있..

2024. 4. 2. 01:32

hyperparameter 개념 간단하게

1. hyperparameter와 parameter의 차이? hyperparameter는 학습과정에서 control할 수 있는 parameter value를 의미하고 학습 전에 사람이 직접 설정해줘야함 parameter는 모델이 학습과정에서 자동으로 배워나가는 값 hyperparameter tuning이란 이러한 learning 알고리즘에서 hyperparameter를 최적화하는 과정임 2. hyperparameter optimization model system의 매커니즘에 영향을 줄 수 있는 여러 요소들 batch_size, learning rate, loss, k-fold, dropout, regularization, optimizer, hidden layer 종류는 많음 hyperparameter..