1. motivation 머신러닝과 딥러닝은 이제 거의 모든 분야에서 활용되고 있음 자율주행자동차, entertainment, healthcare, NLP, text, speech, image, audio 등등 다양한 application 2. on device AI smartphone, smartwatch, IoT device 등에 자체적으로 머신러닝이나 딥러닝 어플리케이션이 올라가 inference를 수행함 이미 object detection, translation 등이 on device에서 수행가능한 딥러닝 어플리케이션들 그러나 올려야하는 어플리케이션이 power(battery) usage가 적어야하고 RAM memory usage가 적어야하고 storage가 적어야하고 computing p..
1. GLUE(General Language Understanding Evaluation) 대량의 데이터를 사전학습하고 원하는 task에 대해 fine-tuning만 하면 사람의 말을 기계가 잘 이해한다는 일반적인 주장이 통용 task를 전부 잘해야한다는 걸 보여줘야하니 다양한 측면을 평가해주는 데이터 군들이 중요하게 다가왔다. 어떤 모델이든 동일한 체계 위에서 공정하게 평가하는 하나의 기준이 필요했다는 것이다. QQP는 질문 2개를 임의로 뽑아 사실상 같은 질문인지 아닌지 파악하는 과제 SST-2는 stanford에서 나온 문장이 부정적인지 긍정적인지 파악하는 과제 CoLA는 문장에 문법적인 오류가 있는지 없는지 파악하는 언어 수용성 과제 STS-B, MRPC는 2개 문장의 유사도를 평가하는 과제 RT..
1. matrix factorization 사용자 * 아이템으로 구성된 하나의 행렬을 2개의 행렬로 분해하는 방법 사용자와 아이템이 각각 무엇인지는 모르겠지만 k개의 잠재요인(latent factor)으로 설명할 수 있다고 생각하고, (사용자 * 잠재요인) * (잠재요인 * 아이템)의 두 행렬의 곱으로 나타낼 수 있다는 것이다. 행렬 R은 M명의 사용자가 N개의 아이템에 대해 평가한 점수가 있는 행렬 M명의 사용자는 모든 아이템에 대해 평가하지는 않는다. 내가 소유한 아이템, 경험해본 아이템에 대해서는 평가할 수 있어도(혹은 평가하지 않고) 경험해보지 않은 아이템에 평가하지는 않는다(거짓으로 할수도 있겠지만..) 그래서 R은 대부분의 아이템이 NULL인 sparse matrix이다. 이러한 행렬 ..
1. motivation 우연히 넷플릭스 시스템의 변화로 전체 영화들의 평점 평균이 급격히 상승한 사건이 관측 되었다. 심지어 영화의 평점은 출시일 이후부터 관측해보면 상승하는 경향이 있었음 어떤 영화로 인해 팬이 되면서 오랜 출시일이 지난 영화를 찾아본다거나 입소문이 나면서 평이 좋은 영화를 추천 받아서 본다거나 추천시스템이 좋다고 하는 것을 계속 보거나 2. idea 영화의 평점이 시간에 영향을 받는다는 것을 알았으므로 사용자의 편향과 상품의 편향이 시간의 함수라고 가정함 위 모형을 바탕으로 앞에서와 같이 모형의 복잡도까지 고려한 loss function을 구성하고 경사하강법으로 loss를 줄이면서 최적화시켜 사용자편향, 상품편향, 사용자 embedding, 상품 embedding을 ..
1. 편향(bias) 사용자의 편향은 해당 사용자가 매긴 평점들의 평균과 전체 상품들의 평점평균의 차이 전체 평점평균에 대해 이 사용자는 얼마나 평가를 후하게 하는지 박하게 하는지 알 수 있다. 나연은 전체 상품들의 평점평균에 비해 0.3점 정도 더 주는 경향이 있다. 상품의 편향은 해당 상품이 받은 평점들의 평균과 전체 상품들의 평점평균의 차이 해당 상품이 전체 상품의 평점평균에 비해 얼마나 좋은 평가를 받는지 나쁜 평가를 받는지 알 수 있다. 식스센스는 전체 상품들의 평점평균에 비해 0.8점정도 긍정적으로 평가 받는다 사용자와 상품의 편향은 현재 주어진 데이터로부터 계산한 예측값이다. 그러니까 정확한 상수가 아니라는 뜻이다. 데이터가 추가되면 사용자의 평점이나 상품의 평점은 바뀌기 때문에..
내 블로그 - 관리자 홈 전환 |
Q
Q
|
---|---|
새 글 쓰기 |
W
W
|
글 수정 (권한 있는 경우) |
E
E
|
---|---|
댓글 영역으로 이동 |
C
C
|
이 페이지의 URL 복사 |
S
S
|
---|---|
맨 위로 이동 |
T
T
|
티스토리 홈 이동 |
H
H
|
단축키 안내 |
Shift + /
⇧ + /
|
* 단축키는 한글/영문 대소문자로 이용 가능하며, 티스토리 기본 도메인에서만 동작합니다.