통계학 세상
close
프로필 배경
프로필 로고

통계학 세상

  • 분류 전체보기 (1480)
    • 다시보는 통계학 (28)
    • 딥러닝 (306)
      • 딥러닝 기초 (63)
      • Computer Vision (76)
      • NLP (59)
      • Machine Reading Comprehensi.. (21)
      • light weight modeling (47)
      • Graph (17)
      • recommendation system (7)
      • reinforcement learning (2)
      • LLM (6)
      • Deep Learning Specializatio.. (7)
      • Diffusion (1)
    • AI 논문 (45)
      • AI trend research (42)
      • 고전이 된 AI 논문 (3)
    • 데이터 분석 프로젝트 연습 (0)
    • 프로그래밍 (291)
      • 프로그래밍 개론 (7)
      • Python (79)
      • Java (15)
      • C++ (9)
      • C# (0)
      • 비전공자를 위한 자바스크립트 (8)
      • Pandas (10)
      • Numpy (8)
      • Pytorch (30)
      • SQL (23)
      • Unity&C# (27)
      • Tensorflow.js (2)
      • git 가이드 (10)
      • 비전공자를 위한 Web (4)
      • React (17)
      • node.js (17)
      • FastAPI (7)
      • docker & jenkins (10)
      • R 프로그래밍 (8)
    • 알고리즘 (499)
      • 알고리즘 일반 (61)
      • Java 기초 (22)
      • C++ 기초 (22)
      • 브루트포스 (22)
      • DFS BFS 정복기 (28)
      • 그래프 이론 정복기 (21)
      • 분리집합 (7)
      • 최단거리 알고리즘 (21)
      • 최소 스패닝 트리 (5)
      • 다이나믹 프로그래밍 (64)
      • 구현,시뮬레이션 (11)
      • 이분 탐색 (17)
      • 정렬 알고리즘 (9)
      • 그리디 알고리즘 (30)
      • 투 포인터 알고리즘 (9)
      • 누적 합 알고리즘 (14)
      • 문자열 알고리즘 (17)
      • 자료구조(스택,큐,해시맵) (14)
      • 순열 사이클 분할 (1)
      • 슬라이딩 윈도우 (2)
      • 연결리스트 (3)
      • 분할 정복 (4)
      • 위상정렬 (3)
      • 세그먼트 트리 (14)
      • 유량 알고리즘 (1)
      • 이분 매칭 (2)
      • 고급 자료구조 (3)
      • 희소배열(더블링) (2)
      • 전처리 (1)
      • 게임이론 (8)
      • 비트마스킹 (7)
      • 애드 혹 알고리즘 (33)
      • 중간에서 만나기 (4)
      • 확률론 알고리즘 (3)
      • 선형대수학 알고리즘 (3)
      • 압축 알고리즘 (2)
      • 오프라인 쿼리 (1)
      • 정밀도 (3)
      • 재귀 연습장 (1)
      • 비둘기집 원리 (2)
      • 휴리스틱 (1)
      • 고급 알고리즘 (1)
      • 알고리즘 논문 (0)
    • 경쟁 프로그래밍 (22)
      • Atcoder (22)
    • 책 읽기 (79)
      • 비전공자도 이해할 수 있는 AI지식 (51)
      • 수학보다 데이터 문해력 (28)
    • 3D 모델링 (0)
      • blender (0)
    • 정수론 (74)
    • 선형대수학 (28)
    • 조합론 (11)
    • 정형데이터 (25)
    • 정보이론 (3)
    • Visualization (7)
    • 기하학 (29)
    • 컴퓨터과학(CS) (13)
    • 대수학 (4)
    • 데이터 해석 (6)
    • 금융 (1)
    • 읽을거리 (9)
  • 홈
  • 태그
  • 방명록
Transformers without Normalization

Transformers without Normalization

개요현대 신경망에서 정규화(Normalization) 계층은 필수적인 요소로 여겨짐.본 연구에서는 정규화 없이도 동일하거나 더 나은 성능을 내는 방법을 제시.Dynamic Tanh (DyT)라는 간단한 연산을 도입하여 정규화 계층을 대체함.DyT는 DyT(x) = tanh(αx)의 형태를 가지며, 입력값을 조정하고 극단값을 억제하는 역할 수행. 주요 기여정규화 계층이 없어도 학습 가능Layer Normalization (LN) 없이도 Transformer 모델이 안정적으로 학습됨을 실험적으로 입증.DyT는 tanh 형태의 S-커브를 활용하여 정규화 계층의 효과를 모방.다양한 영역에서 검증시각 인식, 언어 모델링, 음성 인식 등 다양한 태스크에서 DyT 적용.ViT, ConvNeXt, LLaMA 등의 최신..

  • format_list_bulleted AI 논문/AI trend research
  • · 2025. 3. 25.
  • textsms
batch normalization 개념 간단하게

batch normalization 개념 간단하게

internal covariate shift 현상을 해결하기 위해 등장 layer를 지날수록 layer의 parameter의 변화에 따라 dataset의 분포가 변화한다고 생각한 것이다. 위와 같이 data가 layer를 지나가면서 분포가 변화한다고 생각한 것이 covariate shift 그런데 진짜있는 것인지는 논란이 많다 batch normalization은 각 layer마다 batch set을 normalization하여 분포의 변형을 막겠다는 것이다. batch의 평균과 분산을 구해서 각 입력값을 normalize 시킨다 마지막 $\gamma , \beta$는 normalize하면 activation의 nonlinearity를 잃어버리기 때문에 이를 조정하기 위함이고 학습해야하는 paramete..

  • format_list_bulleted 딥러닝/딥러닝 기초
  • · 2024. 4. 15.
  • textsms
neural network를 training 하기 전에 input을 normalization해야하는 이유

neural network를 training 하기 전에 input을 normalization해야하는 이유

1. normalization 신경망의 훈련을 빠르게 하기 위해 필요한 input normalization 다음과 같이 2차원의 입력데이터가 존재할때 주어진 데이터의 평균을 빼고, 표준편차를 나누는 방법으로 normalization할 수 있다. 데이터에 평균을 빼서 얻은 새로운 값의 평균은 0이 되고 위 그림에서 $x_{1}$이 $x_{2}$보다 분산이 더 큰 특징이 있다. 표준편차를 나눠서 얻은 새로운 값의 분산은 1로 되어 $x_{1}$과 $x_{2}$의 산포가 동일해진다. $$Z = \frac{X-\mu}{\sigma}$$ $$\mu = \frac{1}{m}\sum_{i = 1}^{m} X_{i}$$ $$X = X - \mu$$ 새로 얻은 X의 평균은 0이므로, 분산은 다음과 같이 구할 수 있다. ..

  • format_list_bulleted 딥러닝/Deep Learning Specialization
  • · 2023. 6. 7.
  • textsms
transformer에 사용된 residual connection과 layer normalization

transformer에 사용된 residual connection과 layer normalization

1. residual connection self attention 구조하에 당시 좋은 성능 향상 기법인 residual add connection, layer normalization을 채택했다. input $X_{t}$의 encoding 결과로 $h_{t}$라는 hidden vector를 얻고 싶은데 multi head attention이 학습하는 결과는$h_{t}-X_{t}$라고 하는 것이며 이 결과에 input $X_{t}$를 그대로 더하여 $h_{t}$라는 목표하는 hidden vector를 얻는다. input의 (1,4)의 multi head attention 결과로 얻은 (2,3)에 단순히 더하여 (3,7)이라는 벡터를 얻는 과정이 residual connection이다. 입력 input과 ..

  • format_list_bulleted 딥러닝/NLP
  • · 2022. 5. 5.
  • textsms
  • navigate_before
  • 1
  • navigate_next
공지사항
전체 카테고리
  • 분류 전체보기 (1480)
    • 다시보는 통계학 (28)
    • 딥러닝 (306)
      • 딥러닝 기초 (63)
      • Computer Vision (76)
      • NLP (59)
      • Machine Reading Comprehensi.. (21)
      • light weight modeling (47)
      • Graph (17)
      • recommendation system (7)
      • reinforcement learning (2)
      • LLM (6)
      • Deep Learning Specializatio.. (7)
      • Diffusion (1)
    • AI 논문 (45)
      • AI trend research (42)
      • 고전이 된 AI 논문 (3)
    • 데이터 분석 프로젝트 연습 (0)
    • 프로그래밍 (291)
      • 프로그래밍 개론 (7)
      • Python (79)
      • Java (15)
      • C++ (9)
      • C# (0)
      • 비전공자를 위한 자바스크립트 (8)
      • Pandas (10)
      • Numpy (8)
      • Pytorch (30)
      • SQL (23)
      • Unity&C# (27)
      • Tensorflow.js (2)
      • git 가이드 (10)
      • 비전공자를 위한 Web (4)
      • React (17)
      • node.js (17)
      • FastAPI (7)
      • docker & jenkins (10)
      • R 프로그래밍 (8)
    • 알고리즘 (499)
      • 알고리즘 일반 (61)
      • Java 기초 (22)
      • C++ 기초 (22)
      • 브루트포스 (22)
      • DFS BFS 정복기 (28)
      • 그래프 이론 정복기 (21)
      • 분리집합 (7)
      • 최단거리 알고리즘 (21)
      • 최소 스패닝 트리 (5)
      • 다이나믹 프로그래밍 (64)
      • 구현,시뮬레이션 (11)
      • 이분 탐색 (17)
      • 정렬 알고리즘 (9)
      • 그리디 알고리즘 (30)
      • 투 포인터 알고리즘 (9)
      • 누적 합 알고리즘 (14)
      • 문자열 알고리즘 (17)
      • 자료구조(스택,큐,해시맵) (14)
      • 순열 사이클 분할 (1)
      • 슬라이딩 윈도우 (2)
      • 연결리스트 (3)
      • 분할 정복 (4)
      • 위상정렬 (3)
      • 세그먼트 트리 (14)
      • 유량 알고리즘 (1)
      • 이분 매칭 (2)
      • 고급 자료구조 (3)
      • 희소배열(더블링) (2)
      • 전처리 (1)
      • 게임이론 (8)
      • 비트마스킹 (7)
      • 애드 혹 알고리즘 (33)
      • 중간에서 만나기 (4)
      • 확률론 알고리즘 (3)
      • 선형대수학 알고리즘 (3)
      • 압축 알고리즘 (2)
      • 오프라인 쿼리 (1)
      • 정밀도 (3)
      • 재귀 연습장 (1)
      • 비둘기집 원리 (2)
      • 휴리스틱 (1)
      • 고급 알고리즘 (1)
      • 알고리즘 논문 (0)
    • 경쟁 프로그래밍 (22)
      • Atcoder (22)
    • 책 읽기 (79)
      • 비전공자도 이해할 수 있는 AI지식 (51)
      • 수학보다 데이터 문해력 (28)
    • 3D 모델링 (0)
      • blender (0)
    • 정수론 (74)
    • 선형대수학 (28)
    • 조합론 (11)
    • 정형데이터 (25)
    • 정보이론 (3)
    • Visualization (7)
    • 기하학 (29)
    • 컴퓨터과학(CS) (13)
    • 대수학 (4)
    • 데이터 해석 (6)
    • 금융 (1)
    • 읽을거리 (9)
최근 글
인기 글
최근 댓글
태그
  • #머신러닝
  • #python
  • #백준
  • #알고리즘
  • #정수론
  • #NLP
  • #딥러닝
  • #코딩테스트
  • #프로그래밍
  • #파이썬
전체 방문자
오늘
어제
전체
Copyright © 쭈미로운 생활 All rights reserved.
Designed by JJuum

티스토리툴바