1. matrix factorization 사용자 * 아이템으로 구성된 하나의 행렬을 2개의 행렬로 분해하는 방법 사용자와 아이템이 각각 무엇인지는 모르겠지만 k개의 잠재요인(latent factor)으로 설명할 수 있다고 생각하고, (사용자 * 잠재요인) * (잠재요인 * 아이템)의 두 행렬의 곱으로 나타낼 수 있다는 것이다. 행렬 R은 M명의 사용자가 N개의 아이템에 대해 평가한 점수가 있는 행렬 M명의 사용자는 모든 아이템에 대해 평가하지는 않는다. 내가 소유한 아이템, 경험해본 아이템에 대해서는 평가할 수 있어도(혹은 평가하지 않고) 경험해보지 않은 아이템에 평가하지는 않는다(거짓으로 할수도 있겠지만..) 그래서 R은 대부분의 아이템이 NULL인 sparse matrix이다. 이러한 행렬 ..
1. history 사람이 프로그래밍을 통해 모델을 설계하여 일을 자동으로 해주는 도구를 만들었지만 초기에는 hyperparameter밖에 없어서 사람이 모든 모수를 직접 정해야했다 머신러닝 시대로 오면서 데이터의 어떤 feature를 주로 쓸 지 모델 설계를 사람이 여전히 해야했지만 일부 parameter를 모델이 자동으로 찾아주었다. 물론 여전히 많은 hyperparameter가 존재했다. 딥러닝 시대로 오면서 사람이 input, output을 던져주면 모델이 알아서 feature를 잡아 모델을 설계했고 대부분의 parameter도 알아서 찾아준다. 극히 일부의 hyperparameter는 여전히 존재했다. 추후에는 진짜 모델 설계부터 parameter search까지 기계가 알아서 해주는 시대가 ..
1. hyperparameter와 parameter의 차이? hyperparameter는 학습과정에서 control할 수 있는 parameter value를 의미하고 학습 전에 사람이 직접 설정해줘야함 parameter는 모델이 학습과정에서 자동으로 배워나가는 값 hyperparameter tuning이란 이러한 learning 알고리즘에서 hyperparameter를 최적화하는 과정임 2. hyperparameter optimization model system의 매커니즘에 영향을 줄 수 있는 여러 요소들 batch_size, learning rate, loss, k-fold, dropout, regularization, optimizer, hidden layer 종류는 많음 hyperparameter..
1. train set, validation set, test set 가지고 있는 모든 학습 데이터(training data)에서 전통적으로, 그 일부를 training set으로 사용하고 일부를 hold out cross validation set(development set)으로 쓰고 그 나머지는 test set으로 쓴다. training set에서 어떤 모델의 training algorithm을 수행하고, validation set은 후보로 고른 모델들의 성능을 평가하는데 사용한다. 위 과정을 충분히 반복하고 나서, 최종적으로 고른 모델이 얼마나 잘 편향없이 추론하는지(unbiased estimate) 평가하기 위해 test set을 이용하여 평가를 한다. 2. 70:30으로 데이터를 나누는 것이 ..
1. non-linear activation z1 = W1x + b1 a1 = g1(z1) z2 = W2a1 + b2 a2 = g2(z2) 만약, g1 = px+q, g2 = rx+s의 선형함수라고 한다면, z2 = W2W1(px+q) + W2b1+b2이고, W2W1 = W3, W2b1+b2 = b3라고 한다면, z2 = W3(px+q)+b3이다. 따라서 몇개의 layer를 연결하더라도, activation이 linear라면, 하나의 layer로 만들어진다. 그래서 함수의 표현력이 떨어져서 hidden layer에서 linear activation은 사용하지 않는다. output layer에서 linear activation을 사용할 수 있으며, 그렇다면 hidden layer은 non-linear ac..
내 블로그 - 관리자 홈 전환 |
Q
Q
|
---|---|
새 글 쓰기 |
W
W
|
글 수정 (권한 있는 경우) |
E
E
|
---|---|
댓글 영역으로 이동 |
C
C
|
이 페이지의 URL 복사 |
S
S
|
---|---|
맨 위로 이동 |
T
T
|
티스토리 홈 이동 |
H
H
|
단축키 안내 |
Shift + /
⇧ + /
|
* 단축키는 한글/영문 대소문자로 이용 가능하며, 티스토리 기본 도메인에서만 동작합니다.