Gradient boosting 모형
기존 boosting이 model의 정확성을 점점 개선하는 방식으로 진행되었다면 gradient boosting은 그 이름에서도 알 수 있듯이 loss function을 정의하고 이것을 줄여나가는 방식으로 model을 학습해나갑니다. loss function은 딥러닝에서도 자주 사용하듯이 실제값과 예측값의 차이로 정의합니다. 예시 그림을 보면 이해하기 쉬울 것이라고 생각합니다. 위 그림에서 weight를 예측하는 model을 만든다고 합시다. 실제값과 예측값의 차이인 loss function을 최소로하는 최초 예측은 모든 weight의 평균값으로 예측하는 것이 제일 간단합니다. 여기서 평균은 71.2라고 합니다. 예측한 값과 실제 값들의 차이(이것을 residual 혹은 loss라고 부릅니다)를 각 ro..