Loading...
2023. 5. 14. 02:07

U-Net의 핵심 아이디어 파악하기

1. introduction input 이미지와 비슷한 사이즈의 출력을 가지는 모델? 지금 대부분 일부분 classification하는 모델의 기원 fully convolutional network의 기본적인 특징을 가지면서 낮은 layer의 feature와 높은 layer의 feature를 더욱 잘 융합하는 방법으로 skip connection 방법을 활용 2. 구조 contracting path와 expanding path의 결합으로 U자형처럼 생겼다 2-1) contracting path 3*3 convolution과 ReLU를 반복적으로 통과하고 maxpooling을 통과하여 해상도크기를 절반 낮추고 채널 수를 2배로 높이면서 receptive field를 높여간다 최종적으로 이미지의 전체적인 정..

2023. 5. 12. 00:35

유명한 CNN구조 AlexNet, VGGNet, GoogleNet, ResNet 복습 재활

1. AlexNet 이미지넷 대회 스케일에서는 간단한 구조(layer가 별로 없음) 연산량은 간단한 편인데 성능은 최하위 그런데 model의 memory size가 큰 편임 2. VGGNet 3*3 Convolutional layer로만 구성했다 그런데 연산이 매우 느리면서도 model의 memory size가 매우 크다는 것이 특징 근데 많이쓰는데..? 3. GoogleNet inception module과 auxiliary classifier를 사용함 그 뒤로 다양한 변형(exception 등)이 나왔고 그 중 inception v4는 ResNet 152보다 성능도 좋고 memory size도 적으며 연산도 빨라 4. ResNet layer는 152개로 가장 많은데도 VGG보다 연산은 빠르면서 mem..

2023. 5. 11. 02:28

convolution위치를 변형시키는 deformable convolution

1. motivation 자동차나 물건같은 것은 따로 따로 움직이는 형태가 없는데 사람이나 동물들은 팔, 다리가 상대적으로 위치를 변경하면서 움직일 수 있다 해당 이미지의 회전된 이미지, 반전된 이미지같은 변형된 이미지도 여전히 원본과 label은 같다 이미지에서 large object나 small object 등 여러가지가 있는데 고정된 크기의 convolution filter을 사용하는 것이 효과적인가? 그래서 filter의 크기를 유동적으로 변경시키는 deformable convolution 방법이 등장하였다 2. idea offset field를 학습시키기 위한 convolution layer와 feature map을 뽑는 convolution layer 2개가 존재한다 offset field를 ..

2023. 5. 9. 02:16

computer vision의 한 획을 그은 ResNet의 아이디어 복습하기

1. introduction 최초로 100개 이상 layer를 쌓으면서도 성능이 더 좋아진다는 것을 보임 ImageNet에서 처음으로 인간 level의 성능을 뛰어넘고 1등 classification뿐만 아니라 localization, object detection, segmentation 전부 1등 CVPR best paper 수상 layer의 depth가 성능에 대단히 중요하다는 것을 보였다. 많은 연구자들이 좌절한 부분이었는데 도대체 이것이 어떻게 가능했을까 2. degradation problem 기존 network에서 20 layer와 56 layer의 학습 성능을 비교함 기존에는 layer가 증가하면 model parameter가 증가하여 overfitting에 취약할 것이라고 생각했다 무슨 ..

2023. 5. 8. 03:08

NLP에서 language model의 역사 훑어보기

1. language model 앞의 주어진 문맥을 활용해 다음에 나타날 단어를 예측하는 모델 사람의 언어를 이해하는 것은 쉬운 일은 아니지만 통계적 관점, 딥러닝적 관점에서 문맥이 주어질 때 다음 단어를 잘 예측했다면 언어의 패턴을 잘 학습한 것이다. 2. 확률적 관점 언어 모델은 문장에 대한 확률을 부여하는 task 조건부확률을 이용하여 생성확률을 부여 ’오늘은 햇살이 좋다’라는 문장에 대한 확률은 ‘오늘은’이 먼저 나올 확률에 ‘오늘은’이 주어질때 ‘햇살이’가 나타날 확률에 ‘오늘은 햇살이’ 주어질 때 ‘좋다’가 나타날 확률을 곱한 것 3. RNN을 활용한 예측 x는 input이고 y는 현재 시점의 예측값, h는 각 시점에서 모델이 기억하는 잠재적인 정보 U,V,W는 RNN의 parameter 이전..

2023. 5. 5. 01:35

validation set의 필요성 이해하기 재활

1. validation set은 왜 필요할까 1-1) 필요성 학습 후 test set에 적용하여 모델의 성능을 평가해야하는데 학습 과정에는 평가하기 위한 데이터가 없으니 제대로 학습을 하고는 있는 것인지 정확한 검증이 어려움 학습에 이용되지 않은 데이터로 모델이 학습을 잘 하고 있는지 중간 검증을 하고 있는 것은 분명히 필요함 일반화를 잘 하고 있는지 아닌지 판단이 가능함 test set을 학습 중에 사용할 수는 없으니 train set의 일부로 validation set을 만들어 남은 train set으로 학습을 진행하고 validation set으로 중간 검증을 수행 data가 오히려 줄어드는 것이 아닌가? train set으로부터 validation set을 만들면 데이터가 줄어들어서 오히려 bi..