1. motivation 자동차나 물건같은 것은 따로 따로 움직이는 형태가 없는데 사람이나 동물들은 팔, 다리가 상대적으로 위치를 변경하면서 움직일 수 있다 해당 이미지의 회전된 이미지, 반전된 이미지같은 변형된 이미지도 여전히 원본과 label은 같다 이미지에서 large object나 small object 등 여러가지가 있는데 고정된 크기의 convolution filter을 사용하는 것이 효과적인가? 그래서 filter의 크기를 유동적으로 변경시키는 deformable convolution 방법이 등장하였다 2. idea offset field를 학습시키기 위한 convolution layer와 feature map을 뽑는 convolution layer 2개가 존재한다 offset field를 ..
1. introduction 최초로 100개 이상 layer를 쌓으면서도 성능이 더 좋아진다는 것을 보임 ImageNet에서 처음으로 인간 level의 성능을 뛰어넘고 1등 classification뿐만 아니라 localization, object detection, segmentation 전부 1등 CVPR best paper 수상 layer의 depth가 성능에 대단히 중요하다는 것을 보였다. 많은 연구자들이 좌절한 부분이었는데 도대체 이것이 어떻게 가능했을까 2. degradation problem 기존 network에서 20 layer와 56 layer의 학습 성능을 비교함 기존에는 layer가 증가하면 model parameter가 증가하여 overfitting에 취약할 것이라고 생각했다 무슨 ..
1. validation set은 왜 필요할까 1-1) 필요성 학습 후 test set에 적용하여 모델의 성능을 평가해야하는데 학습 과정에는 평가하기 위한 데이터가 없으니 제대로 학습을 하고는 있는 것인지 정확한 검증이 어려움 학습에 이용되지 않은 데이터로 모델이 학습을 잘 하고 있는지 중간 검증을 하고 있는 것은 분명히 필요함 일반화를 잘 하고 있는지 아닌지 판단이 가능함 test set을 학습 중에 사용할 수는 없으니 train set의 일부로 validation set을 만들어 남은 train set으로 학습을 진행하고 validation set으로 중간 검증을 수행 data가 오히려 줄어드는 것이 아닌가? train set으로부터 validation set을 만들면 데이터가 줄어들어서 오히려 bi..
0. bias와 variance 1) overfitting model이 학습을 너무 해버리면 모델의 차원이나 복잡도가 증가 데이터의 세세한 부분까지 fitting하는 overfitting 현상 발생 모든 데이터는 noise가 존재하는데 overfitting하면 데이터의 noise까지 세세하게 fitting하게 되는 경향성을 가짐 다양한 데이터가 나올 가능성이 높다. 넓은 범위에서 데이터가 나올 가능성이 높아서 high variance라고도 부른다 2) underfitting 반면 학습을 너무 하지 않으면 너무 데이터를 고려하지 않게 된다 데이터를 많이 fitting하지 못한다 일부분에만 fitting되어 일부분에만 편향된다고 하여 high bias라고도 부른다 data set을 만드는 과정에서 일반화를 ..
0. computer vision은 왜 발전했을까 YOLO는 실시간으로 object detection을 가능하게 만들었다 길, 사람, 자동차 등을 segmentation하여 더욱 수준 높은 self driving을 구현하려고 노력하고 있다 이것은 어떻게 가능했을까? ImageNet이라는 대형 dataset이 등장한 것이 엄청난 영향력을 행사했다고 말할 수 있다 고도화된 알고리즘이나 모델이 아닌 약 1400만개의 image와 20000개의 category를 보유한 단순한 대용량의 대형 dataset 실생활에서 발견할 수 있는 다양한 variance들을 다 충족할 수 있는 엄청 큰 대형 dataset 그래서 획기적인 알고리즘 개발이 물론 중요하지만 ImageNet에 검증을 못하면 그런 알고리즘도 실생활에 쓸..
내 블로그 - 관리자 홈 전환 |
Q
Q
|
---|---|
새 글 쓰기 |
W
W
|
글 수정 (권한 있는 경우) |
E
E
|
---|---|
댓글 영역으로 이동 |
C
C
|
이 페이지의 URL 복사 |
S
S
|
---|---|
맨 위로 이동 |
T
T
|
티스토리 홈 이동 |
H
H
|
단축키 안내 |
Shift + /
⇧ + /
|
* 단축키는 한글/영문 대소문자로 이용 가능하며, 티스토리 기본 도메인에서만 동작합니다.