1. rank 주어진 행렬의 linear independent인 행의 수를 row rank, linear independent인 열의 수를 column rank라고 부릅니다. linear algebra에서 가장 중요한 결과 중 하나는 row rank와 column rank가 항상 같다는 것으로 그래서 둘 중 하나를 행렬의 rank라고 부릅니다. 기호로 보통 rA=r(A)=rank(A)라고 표시합니다. 1) square matrix Ann의 rank가 n이면 full rank를 가진다고 하고 모든 행이나 열이 linear independent하다고 부르며 Ann이 invertible인 것과 필요충분조건이다. 2) square matrix가 아닌 경우 Apq에서 ..
1. diagonal matrix diagonal matrix는 main diagonal이 아닌 원소들이 모두 0인 행렬을 말합니다. main diagonal은 i번째 행에 위치하면서 동시에 i번째 열에 위치하는 aii의 원소들을 말합니다. 일반적으로 square matrix를 가정하지만 아닐 수도 있습니다. 그림5에서 빨간 선분은 main diagonal을 나타냅니다. main diagonal이 n개인 diagonal matrix는 기호로 보통 diag(a1,a2,...,an)으로 나타냅니다. 중요한 성질을 몇가지 나열하자면 1-1) determinant는 main diagonal의 원소들의 곱으로 구해집니다. 1-2) main diagonal의 모든 원..
내 블로그 - 관리자 홈 전환 |
Q
Q
|
---|---|
새 글 쓰기 |
W
W
|
글 수정 (권한 있는 경우) |
E
E
|
---|---|
댓글 영역으로 이동 |
C
C
|
이 페이지의 URL 복사 |
S
S
|
---|---|
맨 위로 이동 |
T
T
|
티스토리 홈 이동 |
H
H
|
단축키 안내 |
Shift + /
⇧ + /
|
* 단축키는 한글/영문 대소문자로 이용 가능하며, 티스토리 기본 도메인에서만 동작합니다.