1. GRU(Gated Recurrent Unit) LSTM의 경량화, 적은 메모리와 빠른 계산시간 LSTM의 cell state와 hidden state를 하나의 hidden state로 일원화 하나의 input gate만 활용함 이전 hidden vector ht−1과 input gate에서 계산한 ~ht의 가중평균 형태로 새로운 hidden vector ht가 업데이트되어 나감 하나는 다음 step의 hidden vector ht로 나가고 예측이 필요하다면 똑같은 hidden vector ht가 output layer로 들어가 예측을 수행 흐름과 식을 잘 봐야함 이전 hidden vector ht−1가 input gate로 그대로 들..
1. LSTM 일반적인 RNN(Vanilla RNN)의 구조 LSTM(Long Short Term Memory)의 구조 조금 더 자세히 살펴보면 이상한 것이 여러가지 있다 LSTM의 핵심 idea는 cell state에 있다 공장에서 컨베이어벨트 박스가 흘러들어가는 모습을 상상해보자. 노동자들이 박스 하나 집어서 이상없는지 확인하고 다시 올려서 그대로 보내듯이 이전에 가공한 정보를 그대로 흘려보내는 컨베이어벨트가 cell state이다. 1. forget gate 이제 입력 xt와 이전 hidden state(ht−1)에서 나온 조합된 잠재정보가 흘러들어가면서 forget gate에서는 어떤 정보를 버릴지 결정한다 버려야할 정보는 sigmoid에 의해 0과 1 사이 값으로 압축이 됨 2..
내 블로그 - 관리자 홈 전환 |
Q
Q
|
---|---|
새 글 쓰기 |
W
W
|
글 수정 (권한 있는 경우) |
E
E
|
---|---|
댓글 영역으로 이동 |
C
C
|
이 페이지의 URL 복사 |
S
S
|
---|---|
맨 위로 이동 |
T
T
|
티스토리 홈 이동 |
H
H
|
단축키 안내 |
Shift + /
⇧ + /
|
* 단축키는 한글/영문 대소문자로 이용 가능하며, 티스토리 기본 도메인에서만 동작합니다.