통계학 세상
close
프로필 배경
프로필 로고

통계학 세상

  • 분류 전체보기 (1480)
    • 다시보는 통계학 (28)
    • 딥러닝 (306)
      • 딥러닝 기초 (63)
      • Computer Vision (76)
      • NLP (59)
      • Machine Reading Comprehensi.. (21)
      • light weight modeling (47)
      • Graph (17)
      • recommendation system (7)
      • reinforcement learning (2)
      • LLM (6)
      • Deep Learning Specializatio.. (7)
      • Diffusion (1)
    • AI 논문 (45)
      • AI trend research (42)
      • 고전이 된 AI 논문 (3)
    • 데이터 분석 프로젝트 연습 (0)
    • 프로그래밍 (291)
      • 프로그래밍 개론 (7)
      • Python (79)
      • Java (15)
      • C++ (9)
      • C# (0)
      • 비전공자를 위한 자바스크립트 (8)
      • Pandas (10)
      • Numpy (8)
      • Pytorch (30)
      • SQL (23)
      • Unity&C# (27)
      • Tensorflow.js (2)
      • git 가이드 (10)
      • 비전공자를 위한 Web (4)
      • React (17)
      • node.js (17)
      • FastAPI (7)
      • docker & jenkins (10)
      • R 프로그래밍 (8)
    • 알고리즘 (499)
      • 알고리즘 일반 (61)
      • Java 기초 (22)
      • C++ 기초 (22)
      • 브루트포스 (22)
      • DFS BFS 정복기 (28)
      • 그래프 이론 정복기 (21)
      • 분리집합 (7)
      • 최단거리 알고리즘 (21)
      • 최소 스패닝 트리 (5)
      • 다이나믹 프로그래밍 (64)
      • 구현,시뮬레이션 (11)
      • 이분 탐색 (17)
      • 정렬 알고리즘 (9)
      • 그리디 알고리즘 (30)
      • 투 포인터 알고리즘 (9)
      • 누적 합 알고리즘 (14)
      • 문자열 알고리즘 (17)
      • 자료구조(스택,큐,해시맵) (14)
      • 순열 사이클 분할 (1)
      • 슬라이딩 윈도우 (2)
      • 연결리스트 (3)
      • 분할 정복 (4)
      • 위상정렬 (3)
      • 세그먼트 트리 (14)
      • 유량 알고리즘 (1)
      • 이분 매칭 (2)
      • 고급 자료구조 (3)
      • 희소배열(더블링) (2)
      • 전처리 (1)
      • 게임이론 (8)
      • 비트마스킹 (7)
      • 애드 혹 알고리즘 (33)
      • 중간에서 만나기 (4)
      • 확률론 알고리즘 (3)
      • 선형대수학 알고리즘 (3)
      • 압축 알고리즘 (2)
      • 오프라인 쿼리 (1)
      • 정밀도 (3)
      • 재귀 연습장 (1)
      • 비둘기집 원리 (2)
      • 휴리스틱 (1)
      • 고급 알고리즘 (1)
      • 알고리즘 논문 (0)
    • 경쟁 프로그래밍 (22)
      • Atcoder (22)
    • 책 읽기 (79)
      • 비전공자도 이해할 수 있는 AI지식 (51)
      • 수학보다 데이터 문해력 (28)
    • 3D 모델링 (0)
      • blender (0)
    • 정수론 (74)
    • 선형대수학 (28)
    • 조합론 (11)
    • 정형데이터 (25)
    • 정보이론 (3)
    • Visualization (7)
    • 기하학 (29)
    • 컴퓨터과학(CS) (13)
    • 대수학 (4)
    • 데이터 해석 (6)
    • 금융 (1)
    • 읽을거리 (9)
  • 홈
  • 태그
  • 방명록
LLM 기본4 - transformer + 텍스트 데이터의 토큰화

LLM 기본4 - transformer + 텍스트 데이터의 토큰화

1. transformer 아키텍처 2017년 구글에서 발표한 Attention is All you need 논문에서 처음 등장 머신러닝을 통해 언어를 번역하는 기계 번역 성능을 높이기 위한 방법을 연구하였는데, 당시 널리 사용된 RNN에 비해 성능 면에서 큰 폭으로 앞섰다. 또한 RNN에 비해 모델 학습 속도도 빨랐다. 이렇게 완전히 새로운 형태의 모델이 성능과 속도 면에서 뛰어난 모습을 보여  많은 인공지능 연구자들이 각자 연구에 transformer를 적용하기 시작 현재 transformer은 자연어 처리는 물론 컴퓨터 비전, 추천 시스템 등 모든 AI 분야에서 핵심 아키텍처가 되었다. 기존에 자연어 처리 문제에서 사용하던 RNN은 다음과 같이 텍스트를 순차적으로 하나씩 입력하는 형태다    사람이..

  • format_list_bulleted 딥러닝/LLM
  • · 2025. 4. 6.
  • textsms

static embedding과 dynamic embedding

Static Embedding은 자연어 처리(NLP)에서 단어를 고정된 벡터로 표현하는 방식입니다. 단어마다 고유한 벡터를 가지며, 문맥에 따라 변하지 않는다는 특징이 있습니다. 이는 단어의 의미를 수학적으로 나타내기 위해 자주 사용됩니다.주요 특징고정된 벡터같은 단어는 항상 동일한 벡터로 표현됩니다. 예를 들어, "bank"라는 단어는 "강둑"이든 "은행"이든 동일한 벡터로 나타납니다.사전 학습된 임베딩대규모 코퍼스를 학습해 단어 간의 의미적 유사도를 반영한 벡터를 생성합니다. 학습이 끝난 후에는 임베딩이 고정됩니다.문맥 정보 부족단어의 문맥을 고려하지 않으므로 다의어(같은 단어인데 다른 의미)가 정확히 표현되지 않을 수 있습니다.예시 알고리즘 및 모델Word2Vec (Google, 2013)Conti..

  • format_list_bulleted 딥러닝/NLP
  • · 2025. 1. 18.
  • textsms
latent factor model for recommendation system

latent factor model for recommendation system

1. motivation UV decomposition이라고도 부른다. (SVD라고도 부르나 수학에서 말하는 SVD랑은 조금 차이가 있음) 사용자와 상품그래프에서 사용자와 상품 node를 embedding vector로 잘 표현하는 것이 핵심이다.  2. example of embedding 사용자와 영화의 정보를 바탕으로 embedding한 예시    빨간색 네모부분 사람은 영화 브레이브하트와 리쏄 웨폰과 가까워서 이 영화를 추천하겠다 그러나 latent factor model의 핵심은  위와 같은 고정된 인수(액션, 로맨스 영화 등등)를 가지는 차원이 아닌  사용자와 상품의 정보를 효과적으로 학습하여 가장 추천을 잘 해줄법한 latent factor를 찾아내 그곳으로 embedding하겠다는 것이다...

  • format_list_bulleted 딥러닝/recommendation system
  • · 2024. 7. 16.
  • textsms
word embedding을 하는 또 다른 모델 Glove의 아이디어

word embedding을 하는 또 다른 모델 Glove의 아이디어

1. Glove 입력단어,출력단어가 한 윈도우 내에 동시에 얼마나 나왔는지를 계산하는 co-occurrence matrix를 고려하여 동일한 단어쌍을 반복적으로 학습하는 일을 피하고자했다. 두 벡터의 내적에 이러한 co-occurrence matrix를 고려한 점을 loss function으로 나타내었다. 학습이 Word2Vec보다 빠르고 작은 단어뭉치에도 효과적이라고 알려져있다. Word2Vec은 특정한 입출력 단어 쌍이 자주 등장하는 경우 그들이 자연스럽게 여러번 내적되어 비례하여 유사도가 커지는데 Glove는 중복되는 단어쌍을 미리 계산하여 벌점화하여 중복계산을 줄여 학습이 빠르다는 것이다. 아무튼 두 모델 모두 단어의 embedding vector를 구한다. 성능도 꽤 비슷한것 같다 잘 나온건 W..

  • format_list_bulleted 딥러닝/NLP
  • · 2023. 7. 5.
  • textsms
multimodal learning1 - image and text joint embedding

multimodal learning1 - image and text joint embedding

1. character embedding character level의 경우 아스키코드로 0~255사이 값으로 mapping하여 코딩하는 경우 있지만 machine learning 관점에서는 오히려 사용하기 까다로울수 있다?? 몰랐는데 CNN을 이용하여 character embedding을 하는 경우도 많은 것 같음 underestimate가 과소평가하다라는 뜻인데 misunderestimate는 실제 없는 단어지만 mis와 underestimate의 합성어로 잘못 과소평가하다라는 뜻으로 추측할 수 있음 이런 인간의 언어 능력을 흉내내기 위해 character embedding을 연구하고 있다고는 함 2. word embedding 근데 보통은 word level에서 embedding하는 경우가 많다 오..

  • format_list_bulleted 딥러닝/Computer Vision
  • · 2023. 7. 3.
  • textsms
Nearest neighbor search vs. t-sne를 이용한 차원 축소 기법

Nearest neighbor search vs. t-sne를 이용한 차원 축소 기법

1. Nearest neighbor search - idea high level에서 나온 feature에 대한 분석 여러가지 이미지 데이터를 주고 데이터 베이스에 저장된 데이터중 이들과 가장 비슷한 데이터를 유사도에 따라 정렬 왼쪽이 input으로 준 이미지 데이터이고 오른쪽이 유사한 정도에 따라 정렬한 결과 이 결과를 잘 살펴보면 코끼리 같은 경우 코끼리라는 의미로 비슷한 이미지들이 clustering되어있는 것을 확인 가능 이 모형이 이미지의 의미를 잘 파악했구나로 생각 가능하다 비슷한 이미지 검색을 어떻게 했을지 생각해본다면 단순하게 두 이미지 사이에서 대응하는 pixel별로 거리가 가까운 걸 고를수있는데 그렇게 한 경우 마지막 줄에 주어진 개 이미지의 경우 포즈가 거의 비슷한 개만 출력해야하는데 ..

  • format_list_bulleted 딥러닝/딥러닝 기초
  • · 2023. 6. 18.
  • textsms
  • navigate_before
  • 1
  • 2
  • 3
  • navigate_next
공지사항
전체 카테고리
  • 분류 전체보기 (1480)
    • 다시보는 통계학 (28)
    • 딥러닝 (306)
      • 딥러닝 기초 (63)
      • Computer Vision (76)
      • NLP (59)
      • Machine Reading Comprehensi.. (21)
      • light weight modeling (47)
      • Graph (17)
      • recommendation system (7)
      • reinforcement learning (2)
      • LLM (6)
      • Deep Learning Specializatio.. (7)
      • Diffusion (1)
    • AI 논문 (45)
      • AI trend research (42)
      • 고전이 된 AI 논문 (3)
    • 데이터 분석 프로젝트 연습 (0)
    • 프로그래밍 (291)
      • 프로그래밍 개론 (7)
      • Python (79)
      • Java (15)
      • C++ (9)
      • C# (0)
      • 비전공자를 위한 자바스크립트 (8)
      • Pandas (10)
      • Numpy (8)
      • Pytorch (30)
      • SQL (23)
      • Unity&C# (27)
      • Tensorflow.js (2)
      • git 가이드 (10)
      • 비전공자를 위한 Web (4)
      • React (17)
      • node.js (17)
      • FastAPI (7)
      • docker & jenkins (10)
      • R 프로그래밍 (8)
    • 알고리즘 (499)
      • 알고리즘 일반 (61)
      • Java 기초 (22)
      • C++ 기초 (22)
      • 브루트포스 (22)
      • DFS BFS 정복기 (28)
      • 그래프 이론 정복기 (21)
      • 분리집합 (7)
      • 최단거리 알고리즘 (21)
      • 최소 스패닝 트리 (5)
      • 다이나믹 프로그래밍 (64)
      • 구현,시뮬레이션 (11)
      • 이분 탐색 (17)
      • 정렬 알고리즘 (9)
      • 그리디 알고리즘 (30)
      • 투 포인터 알고리즘 (9)
      • 누적 합 알고리즘 (14)
      • 문자열 알고리즘 (17)
      • 자료구조(스택,큐,해시맵) (14)
      • 순열 사이클 분할 (1)
      • 슬라이딩 윈도우 (2)
      • 연결리스트 (3)
      • 분할 정복 (4)
      • 위상정렬 (3)
      • 세그먼트 트리 (14)
      • 유량 알고리즘 (1)
      • 이분 매칭 (2)
      • 고급 자료구조 (3)
      • 희소배열(더블링) (2)
      • 전처리 (1)
      • 게임이론 (8)
      • 비트마스킹 (7)
      • 애드 혹 알고리즘 (33)
      • 중간에서 만나기 (4)
      • 확률론 알고리즘 (3)
      • 선형대수학 알고리즘 (3)
      • 압축 알고리즘 (2)
      • 오프라인 쿼리 (1)
      • 정밀도 (3)
      • 재귀 연습장 (1)
      • 비둘기집 원리 (2)
      • 휴리스틱 (1)
      • 고급 알고리즘 (1)
      • 알고리즘 논문 (0)
    • 경쟁 프로그래밍 (22)
      • Atcoder (22)
    • 책 읽기 (79)
      • 비전공자도 이해할 수 있는 AI지식 (51)
      • 수학보다 데이터 문해력 (28)
    • 3D 모델링 (0)
      • blender (0)
    • 정수론 (74)
    • 선형대수학 (28)
    • 조합론 (11)
    • 정형데이터 (25)
    • 정보이론 (3)
    • Visualization (7)
    • 기하학 (29)
    • 컴퓨터과학(CS) (13)
    • 대수학 (4)
    • 데이터 해석 (6)
    • 금융 (1)
    • 읽을거리 (9)
최근 글
인기 글
최근 댓글
태그
  • #딥러닝
  • #NLP
  • #python
  • #프로그래밍
  • #파이썬
  • #코딩테스트
  • #백준
  • #정수론
  • #머신러닝
  • #알고리즘
전체 방문자
오늘
어제
전체
Copyright © 쭈미로운 생활 All rights reserved.
Designed by JJuum

티스토리툴바