통계학 세상
close
프로필 배경
프로필 로고

통계학 세상

  • 분류 전체보기 (1480)
    • 다시보는 통계학 (28)
    • 딥러닝 (306)
      • 딥러닝 기초 (63)
      • Computer Vision (76)
      • NLP (59)
      • Machine Reading Comprehensi.. (21)
      • light weight modeling (47)
      • Graph (17)
      • recommendation system (7)
      • reinforcement learning (2)
      • LLM (6)
      • Deep Learning Specializatio.. (7)
      • Diffusion (1)
    • AI 논문 (45)
      • AI trend research (42)
      • 고전이 된 AI 논문 (3)
    • 데이터 분석 프로젝트 연습 (0)
    • 프로그래밍 (291)
      • 프로그래밍 개론 (7)
      • Python (79)
      • Java (15)
      • C++ (9)
      • C# (0)
      • 비전공자를 위한 자바스크립트 (8)
      • Pandas (10)
      • Numpy (8)
      • Pytorch (30)
      • SQL (23)
      • Unity&C# (27)
      • Tensorflow.js (2)
      • git 가이드 (10)
      • 비전공자를 위한 Web (4)
      • React (17)
      • node.js (17)
      • FastAPI (7)
      • docker & jenkins (10)
      • R 프로그래밍 (8)
    • 알고리즘 (499)
      • 알고리즘 일반 (61)
      • Java 기초 (22)
      • C++ 기초 (22)
      • 브루트포스 (22)
      • DFS BFS 정복기 (28)
      • 그래프 이론 정복기 (21)
      • 분리집합 (7)
      • 최단거리 알고리즘 (21)
      • 최소 스패닝 트리 (5)
      • 다이나믹 프로그래밍 (64)
      • 구현,시뮬레이션 (11)
      • 이분 탐색 (17)
      • 정렬 알고리즘 (9)
      • 그리디 알고리즘 (30)
      • 투 포인터 알고리즘 (9)
      • 누적 합 알고리즘 (14)
      • 문자열 알고리즘 (17)
      • 자료구조(스택,큐,해시맵) (14)
      • 순열 사이클 분할 (1)
      • 슬라이딩 윈도우 (2)
      • 연결리스트 (3)
      • 분할 정복 (4)
      • 위상정렬 (3)
      • 세그먼트 트리 (14)
      • 유량 알고리즘 (1)
      • 이분 매칭 (2)
      • 고급 자료구조 (3)
      • 희소배열(더블링) (2)
      • 전처리 (1)
      • 게임이론 (8)
      • 비트마스킹 (7)
      • 애드 혹 알고리즘 (33)
      • 중간에서 만나기 (4)
      • 확률론 알고리즘 (3)
      • 선형대수학 알고리즘 (3)
      • 압축 알고리즘 (2)
      • 오프라인 쿼리 (1)
      • 정밀도 (3)
      • 재귀 연습장 (1)
      • 비둘기집 원리 (2)
      • 휴리스틱 (1)
      • 고급 알고리즘 (1)
      • 알고리즘 논문 (0)
    • 경쟁 프로그래밍 (22)
      • Atcoder (22)
    • 책 읽기 (79)
      • 비전공자도 이해할 수 있는 AI지식 (51)
      • 수학보다 데이터 문해력 (28)
    • 3D 모델링 (0)
      • blender (0)
    • 정수론 (74)
    • 선형대수학 (28)
    • 조합론 (11)
    • 정형데이터 (25)
    • 정보이론 (3)
    • Visualization (7)
    • 기하학 (29)
    • 컴퓨터과학(CS) (13)
    • 대수학 (4)
    • 데이터 해석 (6)
    • 금융 (1)
    • 읽을거리 (9)
  • 홈
  • 태그
  • 방명록
activation function quantization에 대하여

activation function quantization에 대하여

1. introduction weight뿐만 아니라 activation에도 quantization을 적용할 수 있다 심지어 activation과 weight에 서로 다른 quantization을 적용할 수 있다 activation끼리도 서로 다른 quantization 적용이 가능하고 weight끼리도 서로 다른 quantization 적용이 가능하다   위 그림을 보면 weight에 모두 8bit로 quantization을 하고 activation 3개에는 모두 다른 16bit, 8bit, 3bit quantization을 하고 있다  2. problem activation function을 quantization하면 문제점은 계단함수가 되어 모든 구간에서 미분이 안된다는 문제점이 있다 forward ..

  • format_list_bulleted 딥러닝/light weight modeling
  • · 2024. 9. 5.
  • textsms
batch normalization 개념 간단하게

batch normalization 개념 간단하게

internal covariate shift 현상을 해결하기 위해 등장 layer를 지날수록 layer의 parameter의 변화에 따라 dataset의 분포가 변화한다고 생각한 것이다. 위와 같이 data가 layer를 지나가면서 분포가 변화한다고 생각한 것이 covariate shift 그런데 진짜있는 것인지는 논란이 많다 batch normalization은 각 layer마다 batch set을 normalization하여 분포의 변형을 막겠다는 것이다. batch의 평균과 분산을 구해서 각 입력값을 normalize 시킨다 마지막 $\gamma , \beta$는 normalize하면 activation의 nonlinearity를 잃어버리기 때문에 이를 조정하기 위함이고 학습해야하는 paramete..

  • format_list_bulleted 딥러닝/딥러닝 기초
  • · 2024. 4. 15.
  • textsms
2일차 activation, gradient descent, random initialization, deep neural network, hyperparameter 간단하게

2일차 activation, gradient descent, random initialization, deep neural network, hyperparameter 간단하게

1. non-linear activation z1 = W1x + b1 a1 = g1(z1) z2 = W2a1 + b2 a2 = g2(z2) 만약, g1 = px+q, g2 = rx+s의 선형함수라고 한다면, z2 = W2W1(px+q) + W2b1+b2이고, W2W1 = W3, W2b1+b2 = b3라고 한다면, z2 = W3(px+q)+b3이다. 따라서 몇개의 layer를 연결하더라도, activation이 linear라면, 하나의 layer로 만들어진다. 그래서 함수의 표현력이 떨어져서 hidden layer에서 linear activation은 사용하지 않는다. output layer에서 linear activation을 사용할 수 있으며, 그렇다면 hidden layer은 non-linear ac..

  • format_list_bulleted 딥러닝/Deep Learning Specialization
  • · 2024. 1. 11.
  • textsms
CNN visualization6 - grad CAM -

CNN visualization6 - grad CAM -

1. motivation ResNet과 GoogleNet은 이미 CAM구조를 가지고 있어서 상관없는데 AlexNet은 global average pooling이 아닌 flatten을 사용했고 fully connected layer도 2개나 사용 이것을 억지로 CAM 구조로 바꾸고 사용한다면 모델 구조가 바뀌면서 parameter size가 호환이 안될 수 있는 문제부터 재학습까지 해야하고 결과적으로 전체적인 모형 성능이 떨어질 수 있음 그래서 특별히 구조를 변경하지도 않고 재학습도 하지 않으면서 CAM을 뽑는 괴물같은 방법이 등장했다 image를 넣으면 CAM처럼 어디 보고 고양이나 개를 판별했는지 heatmap을 그려준다 당연하지만 guided backpropagation saliency map보다 해..

  • format_list_bulleted 딥러닝/Computer Vision
  • · 2023. 6. 24.
  • textsms
CNN visualization4 - guided backpropagation -

CNN visualization4 - guided backpropagation -

1. motivation CNN에서 일반적으로 ReLU를 사용하여 forward pass를 한다 ReLU는 음수 부분을 0으로 만드는 성질이 있다 이것의 backpropagation은 input단에서 음수부분은 gradient가 존재하지 않는다는 것을 기억한다면 gradient map이 가더라도 gradient가 음수인 부분은 input에서 0으로 masking되어 구해진다 파란색 부분은 input단에서 양수인 부분이라 gradient map에서 gradient 값이 들어올 수 있음 2. Zeiler의 deconvolution 앞에서 backpropagation이 input단의 음수인 부분에서 gradient가 흐르지 않게 만들었는데 input으로 들어오는 gradient map에서 음수인 gradien..

  • format_list_bulleted 딥러닝/Computer Vision
  • · 2023. 6. 22.
  • textsms
convolution의 backpropagation 대충

convolution의 backpropagation 대충

1. convolution은 미분해도 여전히 convolution convolution을 미분하면 도함수와 convolution이 된다. 앞에 있는 f가 커널이라는 거 알지? 2. convolution의 직관적인 계산 그림 처음에는 w1,w2,w3가 x1,x2,x3에 만나서 o1 다음으로 한칸 옆으로 가서 x2,x3,x4를 만나서 o2 다음으로 한칸 옆으로 가서 x3,x4,x5를 만나서 o3 backpropagation을 위해 미분을 해보면 여전히 kernel과의 convolution이 된다는 것을 위에서 보였으므로 왜 x로 전달되느냐 oi의 미분이 xi이기 때문임 $\delta$는 loss를 o로 편미분한 값이다. loss를 w로 미분한것이 $\delta$와 x의 곱으로 나타남 convolution을 ..

  • format_list_bulleted 딥러닝/딥러닝 기초
  • · 2023. 1. 2.
  • textsms
  • navigate_before
  • 1
  • 2
  • navigate_next
공지사항
전체 카테고리
  • 분류 전체보기 (1480)
    • 다시보는 통계학 (28)
    • 딥러닝 (306)
      • 딥러닝 기초 (63)
      • Computer Vision (76)
      • NLP (59)
      • Machine Reading Comprehensi.. (21)
      • light weight modeling (47)
      • Graph (17)
      • recommendation system (7)
      • reinforcement learning (2)
      • LLM (6)
      • Deep Learning Specializatio.. (7)
      • Diffusion (1)
    • AI 논문 (45)
      • AI trend research (42)
      • 고전이 된 AI 논문 (3)
    • 데이터 분석 프로젝트 연습 (0)
    • 프로그래밍 (291)
      • 프로그래밍 개론 (7)
      • Python (79)
      • Java (15)
      • C++ (9)
      • C# (0)
      • 비전공자를 위한 자바스크립트 (8)
      • Pandas (10)
      • Numpy (8)
      • Pytorch (30)
      • SQL (23)
      • Unity&C# (27)
      • Tensorflow.js (2)
      • git 가이드 (10)
      • 비전공자를 위한 Web (4)
      • React (17)
      • node.js (17)
      • FastAPI (7)
      • docker & jenkins (10)
      • R 프로그래밍 (8)
    • 알고리즘 (499)
      • 알고리즘 일반 (61)
      • Java 기초 (22)
      • C++ 기초 (22)
      • 브루트포스 (22)
      • DFS BFS 정복기 (28)
      • 그래프 이론 정복기 (21)
      • 분리집합 (7)
      • 최단거리 알고리즘 (21)
      • 최소 스패닝 트리 (5)
      • 다이나믹 프로그래밍 (64)
      • 구현,시뮬레이션 (11)
      • 이분 탐색 (17)
      • 정렬 알고리즘 (9)
      • 그리디 알고리즘 (30)
      • 투 포인터 알고리즘 (9)
      • 누적 합 알고리즘 (14)
      • 문자열 알고리즘 (17)
      • 자료구조(스택,큐,해시맵) (14)
      • 순열 사이클 분할 (1)
      • 슬라이딩 윈도우 (2)
      • 연결리스트 (3)
      • 분할 정복 (4)
      • 위상정렬 (3)
      • 세그먼트 트리 (14)
      • 유량 알고리즘 (1)
      • 이분 매칭 (2)
      • 고급 자료구조 (3)
      • 희소배열(더블링) (2)
      • 전처리 (1)
      • 게임이론 (8)
      • 비트마스킹 (7)
      • 애드 혹 알고리즘 (33)
      • 중간에서 만나기 (4)
      • 확률론 알고리즘 (3)
      • 선형대수학 알고리즘 (3)
      • 압축 알고리즘 (2)
      • 오프라인 쿼리 (1)
      • 정밀도 (3)
      • 재귀 연습장 (1)
      • 비둘기집 원리 (2)
      • 휴리스틱 (1)
      • 고급 알고리즘 (1)
      • 알고리즘 논문 (0)
    • 경쟁 프로그래밍 (22)
      • Atcoder (22)
    • 책 읽기 (79)
      • 비전공자도 이해할 수 있는 AI지식 (51)
      • 수학보다 데이터 문해력 (28)
    • 3D 모델링 (0)
      • blender (0)
    • 정수론 (74)
    • 선형대수학 (28)
    • 조합론 (11)
    • 정형데이터 (25)
    • 정보이론 (3)
    • Visualization (7)
    • 기하학 (29)
    • 컴퓨터과학(CS) (13)
    • 대수학 (4)
    • 데이터 해석 (6)
    • 금융 (1)
    • 읽을거리 (9)
최근 글
인기 글
최근 댓글
태그
  • #NLP
  • #알고리즘
  • #딥러닝
  • #백준
  • #프로그래밍
  • #코딩테스트
  • #python
  • #파이썬
  • #정수론
  • #머신러닝
전체 방문자
오늘
어제
전체
Copyright © 쭈미로운 생활 All rights reserved.
Designed by JJuum

티스토리툴바