1. abstract 전통적인 셀프 어텐션 메커니즘은 이차적(𝑂(𝑛²)) 복잡도를 갖기 때문에 긴 시퀀스에서 확장성이 제한됩니다. 우리는 FFTNet을 소개하는데, 이는 빠른 푸리에 변환(FFT)을 활용하여 𝑂(𝑛 log 𝑛) 시간 복잡도로 글로벌 토큰 혼합을 달성하는 적응형 스펙트럼 필터링 프레임워크입니다. FFTNet은 입력을 주파수 도메인으로 변환함으로써, 파르세발(Parseval)의 정리가 보장하는 직교성과 에너지 보존 특성을 활용하여 장거리 의존성을 효율적으로 포착합니다. 학습 가능한 스펙트럼 필터와 modReLU 활성화 함수를 통해 중요한 주파수 성분을 동적으로 강조함으로써 기존의 셀프 어텐션을 대체할 수 있는 엄밀하고 적응적인 방식을 제공합니다. Long Range Arena 및 I..
1. pre-trained model은 왜 의미있을까? pre-training과정에서 수행한 up-stream task의 data는 별도의 label이 필요하지 않은 데이터라는 것이 하나의 강점이다. ------------------------------------------------------------------------------------------------------------------------------- 다음 단어를 맞추는 것이 label이 없다고? GPT-1이 수행한 다음 단어를 예측하는 pre-training task는 input sequence와 output sequence가 동일한 task이다. 쉽게 말해 input sequence를 차례대로 읽어들여 input sequenc..
1. NLP의 최신 트렌드 transformer와 self-attention block은 NLP분야에서 범용적인 encoder,decoder로 역할을 수행하며 좋은 성능을 보였다. 처음 제안된 transformer의 self-attention block은 6개였는데 이제는 12개,24개,... 그 이상으로 더욱 쌓아올려 model을 구성한다. 이렇게 쌓은 모델을 self-supervised learning라는 framework하에 대규모의 train data로 pre-train하여 다양한 NLP task등에 transfer learning로 fine-tuning하는 형태로 활용하는 거대한 모형 BERT,GPT,ELECTRA,ALBERT 등이 등장했다. 이런 거대한 모형의 self-supervised le..
내 블로그 - 관리자 홈 전환 |
Q
Q
|
---|---|
새 글 쓰기 |
W
W
|
글 수정 (권한 있는 경우) |
E
E
|
---|---|
댓글 영역으로 이동 |
C
C
|
이 페이지의 URL 복사 |
S
S
|
---|---|
맨 위로 이동 |
T
T
|
티스토리 홈 이동 |
H
H
|
단축키 안내 |
Shift + /
⇧ + /
|
* 단축키는 한글/영문 대소문자로 이용 가능하며, 티스토리 기본 도메인에서만 동작합니다.