https://heekangpark.github.io/ml/shorts/padded-sequence-vs-packed-sequence Padded Sequence vs. Packed Sequence | Reinventing the Wheel 문제상황 자연어와 같은 sequence 데이터들을 다루다 보면 짜증나는 요소가 하나 있는데, 바로 그 길이가 일정하지 않다는 것이다. 이미지 데이터의 경우 crop이나 resize 등으로 가로 세로 크기를 맞 heekangpark.github.io 자연어같은 sequence 데이터는 input들의 길이가 다 다른 경우가 보통이기 때문에 이것을 어떻게 처리할 지 고민할 필요가 있다. 이미지는 crop이나 resize로 이미지 크기를 전부 맞추고 진행하면, batch로 ..
MLP의 경우 현재 시점의 정보만 가지고 입출력을 하므로 과거 정보를 다루기 어렵다. MLP는 오직 현재 시점의 입력만 사용한다 과거의 정보를 사용하고 싶다면? 이전 잠재변수 Ht−1로부터 정보를 받는 새로운 가중치 행렬을 만든다 위와 같은 경우 가중치 행렬이 1층 레이어에서 W(1)X,W(1)H, 2층 레이어에서 W(2)로 총 3개 있음 특히 이들 가중치 행렬은 시간 t와는 무관하게 모든 시점에서 공유된다 혹은 재귀적으로 입력이 반복된다고 해서 이렇게 표현하기도 한다 현재 입력 X에 대해 추가적으로 A에서 이전의 출력정보가 같이 들어가서 H로 나오는 구조 이런 재귀적 구조를 시간순으로 풀어버리면 오른쪽 그림처럼 입력이 매우 많은 fully connected..
1. sequence data 사건의 발생 순서에 따라 순차적으로 들어오는 데이터 말소리, 문자열, 주가, 비디오, 시계열, 동작(motion) 데이터 독립이고 서로 동등한 분포를 따르지 않는다(iid가 아니다.) 데이터의 순서를 바꾸면 확률분포가 바뀐다. 과거의 정보나 앞뒤의 맥락을 이용하지 않으면 미래를 예측하는 것이 어렵다. 순서에 관한 정보를 어떻게 반영해야할지 어려워 다루기 어려운 데이터이다. 심지어 입력의 차원이 어디까지 될지를 모른다. 바꿔말하면 sequence data를 다룬 모델은 입력의 차원이 다르더라도 동작할 수 있는 모델이어야한다. 2. 조건부확률을 이용한 모델링 sequence data는 이전에 발생한 정보를 이용하므로 이전 사건이 발생했다는 가정하에 현재 데이터가 발생할 확률을 ..
내 블로그 - 관리자 홈 전환 |
Q
Q
|
---|---|
새 글 쓰기 |
W
W
|
글 수정 (권한 있는 경우) |
E
E
|
---|---|
댓글 영역으로 이동 |
C
C
|
이 페이지의 URL 복사 |
S
S
|
---|---|
맨 위로 이동 |
T
T
|
티스토리 홈 이동 |
H
H
|
단축키 안내 |
Shift + /
⇧ + /
|
* 단축키는 한글/영문 대소문자로 이용 가능하며, 티스토리 기본 도메인에서만 동작합니다.