1. 딥러닝 기반의 언어 모델 LLM은 기술적으로 딥러닝에 기반을 둔다. 딥러닝은 인간의 두뇌에 영감을 받아 만들어진 신경망으로서, 데이터의 패턴을 학습하는 머신러닝의 한 분야이다. 딥러닝은 표 형태의 정형 데이터뿐만 아니라 텍스트와 이미지 같은 비정형 데이터에서도 뛰어난 패턴 인식 성능을 보여 2010년대 중반 이후 AI 분야의 주류 모델로 자리 잡았다. LLM은 사람의 언어를 컴퓨터가 이해하고 생성할 수 있도록 연구하는 자연어 처리(Natural language processing)에 속한다. 특히 그중에서도 사람과 비슷하게 텍스트를 생성하는 방법을 연구하는 자연어 생성(natural language generation)에 속한다. LLM은 다음에 올 단어가 무엇일지 예측하면서 문장을 하나씩 만들어..
1. GLUE(General Language Understanding Evaluation) 대량의 데이터를 사전학습하고 원하는 task에 대해 fine-tuning만 하면 사람의 말을 기계가 잘 이해한다는 일반적인 주장이 통용 task를 전부 잘해야한다는 걸 보여줘야하니 다양한 측면을 평가해주는 데이터 군들이 중요하게 다가왔다. 어떤 모델이든 동일한 체계 위에서 공정하게 평가하는 하나의 기준이 필요했다는 것이다. QQP는 질문 2개를 임의로 뽑아 사실상 같은 질문인지 아닌지 파악하는 과제 SST-2는 stanford에서 나온 문장이 부정적인지 긍정적인지 파악하는 과제 CoLA는 문장에 문법적인 오류가 있는지 없는지 파악하는 언어 수용성 과제 STS-B, MRPC는 2개 문장의 유사도를 평가하는 과제 RT..
1. precision과 recall의 문제점 정답문장에 대해 2개의 모델로 예측문장을 얻었다고 해보자. 두번째 모델로 만든 문장의 경우 모든 단어가 정답문장 단어와 매칭이 되는데 순서가 전혀 맞지 않는다는 것이 문제다. 그럼에도 불구하고 precision과 recall은 100% 때로는 언어에서 순서는 매우 중요한데 단어만 맞췄다고 완벽한 번역이라고 볼수있을까? precision과 recall, f-measure는 계산방식으로부터 알 수 있겠지만 오직 부합하는 단어의 수에만 집중하기 때문에 순서정보를 전혀 반영하지 않는다는 것이 문제다. 2. introduction bleu score는 순서를 반영하지 않는다는 precision과 recall의 문제점을 개..
https://heekangpark.github.io/ml/shorts/padded-sequence-vs-packed-sequence Padded Sequence vs. Packed Sequence | Reinventing the Wheel 문제상황 자연어와 같은 sequence 데이터들을 다루다 보면 짜증나는 요소가 하나 있는데, 바로 그 길이가 일정하지 않다는 것이다. 이미지 데이터의 경우 crop이나 resize 등으로 가로 세로 크기를 맞 heekangpark.github.io 자연어같은 sequence 데이터는 input들의 길이가 다 다른 경우가 보통이기 때문에 이것을 어떻게 처리할 지 고민할 필요가 있다. 이미지는 crop이나 resize로 이미지 크기를 전부 맞추고 진행하면, batch로 ..
내 블로그 - 관리자 홈 전환 |
Q
Q
|
---|---|
새 글 쓰기 |
W
W
|
글 수정 (권한 있는 경우) |
E
E
|
---|---|
댓글 영역으로 이동 |
C
C
|
이 페이지의 URL 복사 |
S
S
|
---|---|
맨 위로 이동 |
T
T
|
티스토리 홈 이동 |
H
H
|
단축키 안내 |
Shift + /
⇧ + /
|
* 단축키는 한글/영문 대소문자로 이용 가능하며, 티스토리 기본 도메인에서만 동작합니다.