XOR 문제에 접근하기 위해 반드시 필요한 스킬3 -모든 쌍의 XOR의 합(sum of all pair of xor)-
1. 모든 원소 쌍의 XOR 합 $A_{0}, A_{1}, ... , A_{n-1}$에 대하여 $\sum_{i=0}^{i=n-1} \sum_{j=i+1}^{j=n-1} A_{i} \oplus A_{j}$을 구하는 문제 단순하게 풀면 $O(N^{2})$이지만 조금 더 생각해본다면 $O(N)$에 가깝게 해결할 수 있다. 결국 구하고자 하는 값은 $V = A_{i} \oplus A_{j}$라고 할 때, 이 V들의 합이다. 그런데 V를 2진수로 나타낸다면.. $$V = a_{k}2^{k} + a_{k-1}2^{k-1} + ... + a_{1}*2 + a_{0}$$로 나타낼 수 있다. 여기서 $a_{i} = 0$이거나 $a_{i} = 1$이다. 만약 모든 $V = A_{i} \oplus A_{j}$에 대하여 최대..