1. exhaustive search decoding의 매 스텝마다 모든 가능한 경우에 대해 확률분포를 따져보겠다는 것이다. 모든 가능한 경로에 대해 확률을 계산하여 최종적으로 가장 확률이 높은 1가지를 선택한다 근데 이제 보면 알겠지만 계산비용이 O(VT)로 T가 조금만 커져도 말도 안되게 커진다 참고로 greedy decoding은 매 스텝마다 가장 확률이 높은 1가지만 뽑으니까 2. beam search greedy는 계산이 쉽지만 최적을 항상 보장하지 않는다는 점, exhaustive search는 계산 비용이 너무 많이 든다는 점에서 중간책을 선택하고 싶다는 것이다. 그렇다면 매 step마다 beam size=k개만 고려하겠다. 최종적으로 고려한 적절한 수의 후보들 중 가장 확률이 높은..
1. backpropagation attention의 가중치(attention distribution, attention모듈에는 가중치가 없는데? 근데 이놈들은 결국 encoder의 가중치랑 decoder의 가중치에 영향을 받겠지)를 잘 학습하도록 backpropagation에 의한 gradient가 attention module로도 흘러들어감 gradient vanishing 문제를 어느정도 완화시켰다. 직관적으로 attention구조가 없다면 gradient는 위 그림에서 먼 단어까지 가는데 굉장히 멀어서 잘 안흘러가겠다는 것을 느낄 수 있는데 attention구조에 의해 마치 빠른 길로도 gradient가 흘러들어가는 모습이다.. 2. 다양한 attention mechanism attention 구..
decoder의 예측 수행은 이전 예측 단어를 다음 예측을 위한 input으로 넣어준다. 문제가 무엇이냐? 예측이라는 것이 항상 정확할까? 특히 학습 초반에는 예측이 정확할 경우가 거의 없다. 그러면서 정확히 예측하지 못한 단어가 다음 단어 예측을 위한 input으로 들어가면서 이런 오류가 누적된다는 것. 그래서 보통 학습이 더디다. 이런 결과를 피하고싶어서 이전 단어 예측값과는 무관하게 decoder의 다음 단어 예측을 위한 input으로 무조건 정답을 넣어주는 것을 teacher forcing 기법이라고 한다. 첫 단어의 정답은 the인데 예측결과 a가 나왔다. 이것을 넣지 않고 그냥 무조건 the를 넣어주는 것이다. 위와 같은 방법은 당연하겠지만 학습속도를 올릴수 있다. 정답으로 예측하니까 당연하지..
내 블로그 - 관리자 홈 전환 |
Q
Q
|
---|---|
새 글 쓰기 |
W
W
|
글 수정 (권한 있는 경우) |
E
E
|
---|---|
댓글 영역으로 이동 |
C
C
|
이 페이지의 URL 복사 |
S
S
|
---|---|
맨 위로 이동 |
T
T
|
티스토리 홈 이동 |
H
H
|
단축키 안내 |
Shift + /
⇧ + /
|
* 단축키는 한글/영문 대소문자로 이용 가능하며, 티스토리 기본 도메인에서만 동작합니다.