1. dimension vector space V의 basis의 원소의 개수를 V의 dimension이라고 부르고 기호로 dim(V)로 표시합니다. 모든 vector space는 basis를 가지는데 유일하지는 않습니다. 무수히 많은 basis를 가질 수 있는데 그러나 모든 basis는 동일한 원소의 개수를 가지므로 dim(V)는 유일하게 정의됩니다. basis의 원소의 개수가 무수히 많으면 V가 infinite dimensional하다고 부르고 유한하면 finite dimensional이라고 부릅니다. 1) vector space V의 linear subspace가 W이면 dim(W)≤dim(V) 2) 만약 V가 finite dimensional vector space..
내 블로그 - 관리자 홈 전환 |
Q
Q
|
---|---|
새 글 쓰기 |
W
W
|
글 수정 (권한 있는 경우) |
E
E
|
---|---|
댓글 영역으로 이동 |
C
C
|
이 페이지의 URL 복사 |
S
S
|
---|---|
맨 위로 이동 |
T
T
|
티스토리 홈 이동 |
H
H
|
단축키 안내 |
Shift + /
⇧ + /
|
* 단축키는 한글/영문 대소문자로 이용 가능하며, 티스토리 기본 도메인에서만 동작합니다.