sound source localization의 unsupervised learning에서 설명한 방식이 사실 triplet loss를 이용한 것이다. metric learning의 일종 기준이 되는 image data에 대응하는 audio data를 positive data라고 하고 (fv,fs+)라고 표시하자. 반대로 image data에 대응하지 않는 데이터는 negative data라고 하고 (fv,fs-)라고 표시한다. 위에서 fv는 지금 동일한 기준 데이터임 직관적으로 fv와 fs+ 는 서로 대응하는 관계니까 거리가 가까워야하고 fv와 fs-는 서로 대응하지 않으니까 거리가 멀어야한다. 공간상에 positive data는 가깝게 negative data는 멀게 분리하여 배치하는 것이 tr..
1. in batch negatives 두 encoder BERTp와 BERTq는 어떻게 training을 할까? query와 연관된 passage인 ground truth passage와는 최대한 거리가 가깝도록 embedding을 함 nearest neighbor의 L2 distance를 좁힐 수 있지만 강의에서는 inner product를 최대화 시킴 (question,passage) pair dataset은 어디서 구하냐고? 기존 MRC dataset인 KorQuAD, SQuAD 등 활용 기존 MRC dataset을 활용하면 하나의 query에 대해 정답인 passage와 정답이 아닌 passage가 있다 전자인 정답 passage를 positive sample, 정답이 아닌 passage는 ne..
내 블로그 - 관리자 홈 전환 |
Q
Q
|
---|---|
새 글 쓰기 |
W
W
|
글 수정 (권한 있는 경우) |
E
E
|
---|---|
댓글 영역으로 이동 |
C
C
|
이 페이지의 URL 복사 |
S
S
|
---|---|
맨 위로 이동 |
T
T
|
티스토리 홈 이동 |
H
H
|
단축키 안내 |
Shift + /
⇧ + /
|
* 단축키는 한글/영문 대소문자로 이용 가능하며, 티스토리 기본 도메인에서만 동작합니다.