feature scaling을 위한 정규화(normalization) 기법들
1. 왜 해야하는가? 원본 데이터의 값 범위가 크게 다를 경우, 일부 머신러닝 알고리즘에서는 정규화를 하지 않으면 목적 함수가 제대로 작동하지 않을 수 있습니다. 예를 들어, 많은 분류기(classifier)들은 두 지점 간의 유클리드 거리(Euclidean distance)를 계산합니다. 만약 어떤 특성(feature)이 매우 넓은 값의 범위를 가진다면, 이 거리 계산은 해당 특성에 의해 지배될 수 있습니다. 따라서 모든 특성의 값 범위를 정규화하여, 각 특성이 최종 거리 계산에 거의 비슷한 비중으로 기여하도록 하는 것이 중요합니다. 또한, 정규화를 적용하는 또 다른 이유는 경사 하강법(gradient descent)이 정규화를 통해 훨씬 더 빠르게 수렴하기 때문입니다. 정규화는 손실 함수에 정규..