1. 목적 다음과 같은 이미지 데이터들로부터, 더욱 많은 캐릭터 이미지를 획득 이들을 훈련 데이터로 사용하여, 훈련 데이터에 포함되어 있지 않은 다른 캐릭터를 얻고자함 이를 diffusion model을 학습시켜 생성할 수 있다. 2. 과정 이런 데이터들을 신경망에 어떻게 학습시켜야할까? 생성하고자하는 '캐릭터'가 무엇인지 전반적인 개념에 대해 학습시킨다. 이러한 '개념'은 머리 색상, 벨트 여부, 몸 윤곽선 등등이 될 수 있다. 이러한 개념을 강조하기 위해 데이터에 noise를 추가할 수 있다. 이를 noising process라고 부른다. 마치 물에 잉크를 떨어뜨리면, 처음에는 잉크가 어디 떨어졌는지 알 수 있는데 시간이 지나면서 잉크가 확산(diffusion)하여 잉크가 어디에 떨어졌는지 알 수 없..
모델이 validation set에 성능을 내지 못할때, training data에 overfitting이 되었을때 데이터를 더 많이 얻는 것은 좋은 방법이지만 항상 그럴 수는 없다. 그럴때 시도하면 좋은 것이 regularization L2 regularization은 가중치 W의 L2 norm, L1 regularization은 가중치 W의 L1 norm을 더해주는데... 1. 여기서 하나 bias도 parameter인데 왜 가중치 W 항만 더해주는것인가? 모델의 거의 모든 parameter가 W에 집중되어 있기 때문에 bias를 더할수도 있지만 계산비용 대비 거의 차이가 없다고 한다 2. L2 regularization을 일반적으로 많이 사용한다. L1 regularization을 사용하면 가중치 ..
1. non-linear activation z1 = W1x + b1 a1 = g1(z1) z2 = W2a1 + b2 a2 = g2(z2) 만약, g1 = px+q, g2 = rx+s의 선형함수라고 한다면, z2 = W2W1(px+q) + W2b1+b2이고, W2W1 = W3, W2b1+b2 = b3라고 한다면, z2 = W3(px+q)+b3이다. 따라서 몇개의 layer를 연결하더라도, activation이 linear라면, 하나의 layer로 만들어진다. 그래서 함수의 표현력이 떨어져서 hidden layer에서 linear activation은 사용하지 않는다. output layer에서 linear activation을 사용할 수 있으며, 그렇다면 hidden layer은 non-linear ac..
classification에서 가장 자주쓰는 cross entropy loss에 대해 생각해보면 binary classification의 경우 L(y)=−ylog(p)−(1−y)log(1−p) y는 true value이고 p는 모델이 y=1로 예측할 확률이다. 이 cross entropy loss가 자주 쓰이지만 항상 좋은 선택일까?? 예측하고자 하는 데이터가 실제 정답이 y=1인 경우 loss를 계산하면 L(y=1)=−ylog(p)=−log(p) 실제 정답이 y=0인 경우는 L(y=0)=−(1−y)log(1−p)=−log(1−p) loss가 오직 true value를 예측할 확률에만 의존한다는 것이다. true value가 1일 때 loss의 그래프를 그림으로 나타냈..
1. loss function은 도대체 무엇인가? 누군가가 loss function이 뭐냐고 물어보면 뭐라 대답해야할지 모르겠다. 나라면 당장 데이터의 실제 정답(ground truth)과 모델이 예측한 대답의 차이로 정의되는 함수라고 답할 것 같다 찾아보니까 대부분 이 말에 비슷한 것 같다 위키피디아의 첫줄 정의를 가지고 와봤다. 'In mathematical optimization and decision theory, a loss function or cost function is a function that maps an event or values of one or more variables onto a real number intuitively representing some "cost" ass..
내 블로그 - 관리자 홈 전환 |
Q
Q
|
---|---|
새 글 쓰기 |
W
W
|
글 수정 (권한 있는 경우) |
E
E
|
---|---|
댓글 영역으로 이동 |
C
C
|
이 페이지의 URL 복사 |
S
S
|
---|---|
맨 위로 이동 |
T
T
|
티스토리 홈 이동 |
H
H
|
단축키 안내 |
Shift + /
⇧ + /
|
* 단축키는 한글/영문 대소문자로 이용 가능하며, 티스토리 기본 도메인에서만 동작합니다.