1. introduction Vanilla RNN을 개선하였다. 그래서 gradient vanishing/exploding을 개선하여 좋은 성능을 보임 the problem of long term dependency를 해결하고자 time-step이 먼 경우에도 필요한 정보를 처리할 수 있도록 단기로 기억되는 hidden state 정보를 길게 가져오자. Vanilla RNN은 현재 input의 정보와 이전 시점의 hidden 정보를 조합하여 새로운 hidden 정보를 만든다. ht=fw(xt+ht−1) 반면 LSTM은 전 시점에서 다른 역할을 하는 2가지 정보와 input 정보를 이용함 $$f(C_{t}, h_{t}) = LSTM(X_{t}, C_{t-1}, h_{t-..
1. LSTM 일반적인 RNN(Vanilla RNN)의 구조 LSTM(Long Short Term Memory)의 구조 조금 더 자세히 살펴보면 이상한 것이 여러가지 있다 LSTM의 핵심 idea는 cell state에 있다 공장에서 컨베이어벨트 박스가 흘러들어가는 모습을 상상해보자. 노동자들이 박스 하나 집어서 이상없는지 확인하고 다시 올려서 그대로 보내듯이 이전에 가공한 정보를 그대로 흘려보내는 컨베이어벨트가 cell state이다. 1. forget gate 이제 입력 xt와 이전 hidden state(ht−1)에서 나온 조합된 잠재정보가 흘러들어가면서 forget gate에서는 어떤 정보를 버릴지 결정한다 버려야할 정보는 sigmoid에 의해 0과 1 사이 값으로 압축이 됨 2..
내 블로그 - 관리자 홈 전환 |
Q
Q
|
---|---|
새 글 쓰기 |
W
W
|
글 수정 (권한 있는 경우) |
E
E
|
---|---|
댓글 영역으로 이동 |
C
C
|
이 페이지의 URL 복사 |
S
S
|
---|---|
맨 위로 이동 |
T
T
|
티스토리 홈 이동 |
H
H
|
단축키 안내 |
Shift + /
⇧ + /
|
* 단축키는 한글/영문 대소문자로 이용 가능하며, 티스토리 기본 도메인에서만 동작합니다.