통계학 세상
close
프로필 배경
프로필 로고

통계학 세상

  • 분류 전체보기 (1480)
    • 다시보는 통계학 (28)
    • 딥러닝 (306)
      • 딥러닝 기초 (63)
      • Computer Vision (76)
      • NLP (59)
      • Machine Reading Comprehensi.. (21)
      • light weight modeling (47)
      • Graph (17)
      • recommendation system (7)
      • reinforcement learning (2)
      • LLM (6)
      • Deep Learning Specializatio.. (7)
      • Diffusion (1)
    • AI 논문 (45)
      • AI trend research (42)
      • 고전이 된 AI 논문 (3)
    • 데이터 분석 프로젝트 연습 (0)
    • 프로그래밍 (291)
      • 프로그래밍 개론 (7)
      • Python (79)
      • Java (15)
      • C++ (9)
      • C# (0)
      • 비전공자를 위한 자바스크립트 (8)
      • Pandas (10)
      • Numpy (8)
      • Pytorch (30)
      • SQL (23)
      • Unity&C# (27)
      • Tensorflow.js (2)
      • git 가이드 (10)
      • 비전공자를 위한 Web (4)
      • React (17)
      • node.js (17)
      • FastAPI (7)
      • docker & jenkins (10)
      • R 프로그래밍 (8)
    • 알고리즘 (499)
      • 알고리즘 일반 (61)
      • Java 기초 (22)
      • C++ 기초 (22)
      • 브루트포스 (22)
      • DFS BFS 정복기 (28)
      • 그래프 이론 정복기 (21)
      • 분리집합 (7)
      • 최단거리 알고리즘 (21)
      • 최소 스패닝 트리 (5)
      • 다이나믹 프로그래밍 (64)
      • 구현,시뮬레이션 (11)
      • 이분 탐색 (17)
      • 정렬 알고리즘 (9)
      • 그리디 알고리즘 (30)
      • 투 포인터 알고리즘 (9)
      • 누적 합 알고리즘 (14)
      • 문자열 알고리즘 (17)
      • 자료구조(스택,큐,해시맵) (14)
      • 순열 사이클 분할 (1)
      • 슬라이딩 윈도우 (2)
      • 연결리스트 (3)
      • 분할 정복 (4)
      • 위상정렬 (3)
      • 세그먼트 트리 (14)
      • 유량 알고리즘 (1)
      • 이분 매칭 (2)
      • 고급 자료구조 (3)
      • 희소배열(더블링) (2)
      • 전처리 (1)
      • 게임이론 (8)
      • 비트마스킹 (7)
      • 애드 혹 알고리즘 (33)
      • 중간에서 만나기 (4)
      • 확률론 알고리즘 (3)
      • 선형대수학 알고리즘 (3)
      • 압축 알고리즘 (2)
      • 오프라인 쿼리 (1)
      • 정밀도 (3)
      • 재귀 연습장 (1)
      • 비둘기집 원리 (2)
      • 휴리스틱 (1)
      • 고급 알고리즘 (1)
      • 알고리즘 논문 (0)
    • 경쟁 프로그래밍 (22)
      • Atcoder (22)
    • 책 읽기 (79)
      • 비전공자도 이해할 수 있는 AI지식 (51)
      • 수학보다 데이터 문해력 (28)
    • 3D 모델링 (0)
      • blender (0)
    • 정수론 (74)
    • 선형대수학 (28)
    • 조합론 (11)
    • 정형데이터 (25)
    • 정보이론 (3)
    • Visualization (7)
    • 기하학 (29)
    • 컴퓨터과학(CS) (13)
    • 대수학 (4)
    • 데이터 해석 (6)
    • 금융 (1)
    • 읽을거리 (9)
  • 홈
  • 태그
  • 방명록
여러가지 ensemble learning 방법들

여러가지 ensemble learning 방법들

1. background ensemble이란 단일 알고리즘보다 적당히 여러개 알고리즘을 조합해서 성능이 향상되길 기대하는 것 모든 데이터셋에 대한 우수한 알고리즘이 존재하는가?    위 그림에서 x축은 데이터셋이고 y축은 알고리즘의 상대적인 에러이고 각 line은 알고리즘에 따른 그래프 그림을 보면 모든 알고리즘 각각이 모든 데이터셋에 우수하진 않다 neural network도 Diabetes라는 데이터에는 에러율이 높다 특정 알고리즘이 모든 데이터셋에 대해 항상 열등한가? 우월한가? 그것은 아니다  따라서 하나의 알고리즘을 쓰는 것보다 여러 알고리즘을 모두 쓰는 것이 좋은 인사이트를 얻을 수 있다   2. ensemble learning  여러 개의 분류기를 생성하고 그 예측을 결합함으로써 보다 정확한..

  • format_list_bulleted 정형데이터
  • · 2024. 8. 30.
  • textsms
앙상블(ensemble) 기본 개념 제대로 이해하기

앙상블(ensemble) 기본 개념 제대로 이해하기

0. bias와 variance 1) overfitting model이 학습을 너무 해버리면 모델의 차원이나 복잡도가 증가 데이터의 세세한 부분까지 fitting하는 overfitting 현상 발생 모든 데이터는 noise가 존재하는데 overfitting하면 데이터의 noise까지 세세하게 fitting하게 되는 경향성을 가짐 다양한 데이터가 나올 가능성이 높다. 넓은 범위에서 데이터가 나올 가능성이 높아서 high variance라고도 부른다 2) underfitting 반면 학습을 너무 하지 않으면 너무 데이터를 고려하지 않게 된다 데이터를 많이 fitting하지 못한다 일부분에만 fitting되어 일부분에만 편향된다고 하여 high bias라고도 부른다 data set을 만드는 과정에서 일반화를 ..

  • format_list_bulleted 딥러닝/딥러닝 기초
  • · 2023. 5. 5.
  • textsms
머신러닝 모델링 기본방법 - bootstrapping, bagging, boosting

머신러닝 모델링 기본방법 - bootstrapping, bagging, boosting

1. bootstrapping 현재 데이터를 복원추출로 random sampling하여 얻은 여러 데이터로 학습하는 기법 각각의 sample 각각에서 모델을 만들어 예측의 consistence를 보고자 하는 것임 혹은 데이터가 부족할 때 데이터를 늘리고자 쓰는 기법 위 그림은 bootstrapping을 이용한 bagging을 나타낸다고 볼 수 있겠다 2. bagging bootstrapping으로 만든 데이터 set으로 여러 모델을 만들고 각 모델의 성능을 적절하게 aggregation 한다 aggregation하는 방법은 voting이나 averaging 등이 있다. 보통 모든 학습데이터를 써서 결과를 내는게 성능이 좋아보이지만 의외로 80% sampling bootstrapping 하여 얻은 bagg..

  • format_list_bulleted 딥러닝/딥러닝 기초
  • · 2022. 12. 31.
  • textsms
CatBoost 모형

CatBoost 모형

그 이름 Cat가 categorical feature를 뜻하는데 categorical 변수에 최적화되어있다고 논문에서 주장하고 있습니다. “ Two critical algorithmic advances introduced in CatBoost are the implementation of ordered boosting, a permutation-driven alternative to the classic algorithm, and an innovative algorithm for processing categorical features “ 논문에서 언급하는 ordered boosting은 일반적인 boosting이 모든 데이터 row에 대해 gradient 업데이트 과정을 거쳤다면 Catboost는 다음..

  • format_list_bulleted 정형데이터
  • · 2021. 11. 3.
  • textsms

Light GBM 모형

LightGBM은 그 이름 Light에서도 알 수 있듯이 computational cost를 줄이기 위해 여러 가지 고급기술?을 도입하였다고 합니다. 그 중 하나인 Gradient based one sided sampling에 대해 직관적으로 이해해봅시다. 위에서 gradient boosting 기법을 다시 한번 생각해보면 각 data row마다 residual을 계산하여 learning rate를 이용한 예측값을 갱신하는 과정이 있었습니다. 이것은 마치 data row가 가지는 gradient로부터 gradient descent를 하는 과정을 연상시키죠. 그런데 Gradient based one sided sampling은 이름에서도 알 수 있듯이 gradient를 기반으로 필요없는 데이터는 버리겠다는..

  • format_list_bulleted 정형데이터
  • · 2021. 11. 2.
  • textsms
XGBoost 모델

XGBoost 모델

1. XGBoost 모델 gradient boosting의 약점은 train data에 대해 한없이 loss인 residual을 줄여나가니까 overfitting되기 쉽다는 단점이 있습니다. 이런 단점을 인식하여 나온 방법이 XGBoost입니다. XGBoost는 실제 값과 예측 값의 차이를 일반적인 loss에 regularization term을 더하여 이것을 줄이는 방향으로 학습을 진행합니다. loss function도 단순한 MSE같은 차이뿐만 아니라 다양한 loss function을 사용하여 task에 따른 유연한 튜닝을 가능하게 하였다고 합니다. 2. parameter norm penalty parameter norm penalty 기법은 loss function에 norm penalty를 더하는..

  • format_list_bulleted 정형데이터
  • · 2021. 11. 2.
  • textsms
  • navigate_before
  • 1
  • 2
  • navigate_next
공지사항
전체 카테고리
  • 분류 전체보기 (1480)
    • 다시보는 통계학 (28)
    • 딥러닝 (306)
      • 딥러닝 기초 (63)
      • Computer Vision (76)
      • NLP (59)
      • Machine Reading Comprehensi.. (21)
      • light weight modeling (47)
      • Graph (17)
      • recommendation system (7)
      • reinforcement learning (2)
      • LLM (6)
      • Deep Learning Specializatio.. (7)
      • Diffusion (1)
    • AI 논문 (45)
      • AI trend research (42)
      • 고전이 된 AI 논문 (3)
    • 데이터 분석 프로젝트 연습 (0)
    • 프로그래밍 (291)
      • 프로그래밍 개론 (7)
      • Python (79)
      • Java (15)
      • C++ (9)
      • C# (0)
      • 비전공자를 위한 자바스크립트 (8)
      • Pandas (10)
      • Numpy (8)
      • Pytorch (30)
      • SQL (23)
      • Unity&C# (27)
      • Tensorflow.js (2)
      • git 가이드 (10)
      • 비전공자를 위한 Web (4)
      • React (17)
      • node.js (17)
      • FastAPI (7)
      • docker & jenkins (10)
      • R 프로그래밍 (8)
    • 알고리즘 (499)
      • 알고리즘 일반 (61)
      • Java 기초 (22)
      • C++ 기초 (22)
      • 브루트포스 (22)
      • DFS BFS 정복기 (28)
      • 그래프 이론 정복기 (21)
      • 분리집합 (7)
      • 최단거리 알고리즘 (21)
      • 최소 스패닝 트리 (5)
      • 다이나믹 프로그래밍 (64)
      • 구현,시뮬레이션 (11)
      • 이분 탐색 (17)
      • 정렬 알고리즘 (9)
      • 그리디 알고리즘 (30)
      • 투 포인터 알고리즘 (9)
      • 누적 합 알고리즘 (14)
      • 문자열 알고리즘 (17)
      • 자료구조(스택,큐,해시맵) (14)
      • 순열 사이클 분할 (1)
      • 슬라이딩 윈도우 (2)
      • 연결리스트 (3)
      • 분할 정복 (4)
      • 위상정렬 (3)
      • 세그먼트 트리 (14)
      • 유량 알고리즘 (1)
      • 이분 매칭 (2)
      • 고급 자료구조 (3)
      • 희소배열(더블링) (2)
      • 전처리 (1)
      • 게임이론 (8)
      • 비트마스킹 (7)
      • 애드 혹 알고리즘 (33)
      • 중간에서 만나기 (4)
      • 확률론 알고리즘 (3)
      • 선형대수학 알고리즘 (3)
      • 압축 알고리즘 (2)
      • 오프라인 쿼리 (1)
      • 정밀도 (3)
      • 재귀 연습장 (1)
      • 비둘기집 원리 (2)
      • 휴리스틱 (1)
      • 고급 알고리즘 (1)
      • 알고리즘 논문 (0)
    • 경쟁 프로그래밍 (22)
      • Atcoder (22)
    • 책 읽기 (79)
      • 비전공자도 이해할 수 있는 AI지식 (51)
      • 수학보다 데이터 문해력 (28)
    • 3D 모델링 (0)
      • blender (0)
    • 정수론 (74)
    • 선형대수학 (28)
    • 조합론 (11)
    • 정형데이터 (25)
    • 정보이론 (3)
    • Visualization (7)
    • 기하학 (29)
    • 컴퓨터과학(CS) (13)
    • 대수학 (4)
    • 데이터 해석 (6)
    • 금융 (1)
    • 읽을거리 (9)
최근 글
인기 글
최근 댓글
태그
  • #머신러닝
  • #딥러닝
  • #알고리즘
  • #python
  • #백준
  • #프로그래밍
  • #코딩테스트
  • #정수론
  • #NLP
  • #파이썬
전체 방문자
오늘
어제
전체
Copyright © 쭈미로운 생활 All rights reserved.
Designed by JJuum

티스토리툴바