neural network의 weight나 activation을 연속적으로 정밀하게 미세한 값으로 표현하는 것보다 정밀도가 떨어지더라도 sparse하게 드문드문 떨어지는 덩어리 quantization으로 표현 1. 왜 하는가? 가장 중요한 부분은 training을 더 빠르게 하기위함보다는 inference 과정에서 속도를 빠르게 하고 싶어서 quantization을 하는 것 model size가 작아짐 32bit의 232에서 16bit로 216으로 8bit에서 28로 절반씩 표현능력과 size가 감소하나 그만큼 메모리양을 절약할 수 있음 저장된 데이터를 얼마나 읽어올 수 있는지 memory bandwidth의 필요량을 줄일 수 있다? 이게 무슨 말인지 생각해봤는데 큰 siz..
1. motivation train data와 real data사이에는 분명한 gap이 있다 이 gap을 채우기 위해 더 많은 데이터를 획득하거나 bias가 안된 데이터를 획득하거나 그런데 이제 데이터 획득 비용에는 한계가 있다 그래서 손쉽게 학습데이터의 데이터들에 기본적인 operation으로 데이터를 여러장 늘리자는 것이 data augmentation이다. 기본적인 방법은 이미지의 기하학 변환이나 색깔 변환 등으로 real을 반영하지 못한 부분을 조금이라도 채워나가는것 2. brightness data들의 밝기를 조절하여 여러장 만들어내는 방법 호랑이 이미지는 어두워졌고 개 이미지는 밝아진게 느껴지나 image의 R,G,B 채널 pixel에 일정 숫자 pixel을 더하거나 random sampl..
내 블로그 - 관리자 홈 전환 |
Q
Q
|
---|---|
새 글 쓰기 |
W
W
|
글 수정 (권한 있는 경우) |
E
E
|
---|---|
댓글 영역으로 이동 |
C
C
|
이 페이지의 URL 복사 |
S
S
|
---|---|
맨 위로 이동 |
T
T
|
티스토리 홈 이동 |
H
H
|
단축키 안내 |
Shift + /
⇧ + /
|
* 단축키는 한글/영문 대소문자로 이용 가능하며, 티스토리 기본 도메인에서만 동작합니다.