1. MRC와 ODQA는 무슨차이인가 MRC는 문서가 주어지고 그에 대한 질문이 함께 주어지면 모델이 문서를 읽고 질문에 대한 답을 내는 방식 ODQA는 문서가 주어지지 않았는데 질문이 주어지면 질문과 관련된 문서를 찾고 그 문서로부터 모델이 질문에 대한 답을 내는 방식 2. open domain vs. open book vs. closed book open domain은 질문이 주어질 때 관련된 문서를 찾아 읽고 질문에 답을 내는 task 자체를 나타냄 open book은 질문을 던졌을 때 모델이 질문에 답하기 위해 ‘책’이라고 할 수 있는 거대한 corpus를 접근하게 하는것 closed book은 corpus없이 질문을 받으면 모델이 가지고 있는 사전지식만을 활용하여 정답을 냄 3. core ide..
1. BERT의 transfer learning pre-training으로 masked language modeling과 next sentence prediction을 동시에 수행한다. pre-training한 BERT는 down stream task를 위해 적절하게 초기화된 가중치를 갖고 이를 바탕으로 여러 task를 수행 2. sentence pair classification & single sentence classification sentence pair classification은 entailment prediction을 생각할 수 있을 것 같고 single sentence classification은 sentiment classification을 생각할 수 있을듯? sentence pair ..
1. 기본적인 특징 GPT-1에서 발전된 형태 ‘Just a really big transformer’ 특별한 구조 변경없이 transformer self attention block을 더욱 쌓아올려 모델 크기를 키웠다 pre-train task로 주어진 text의 다음 단어를 맞추는 language modeling “language model은 model의 구조나 parameter를 변경하지 않고도 zero shot setting에서 downstream task를 수행할 수 있다.” 정확히 말하면 훈련 시 다양한 스킬이나 패턴을 인식하는 방법을 학습함으로써 추론 시 downstream task에 빠르게 적응하도록 하는 방법이다. GPT-2에서는 이러한 방법을 "in-context learning" 방식..
1. introduction 질문이 주어지면 관련된 문서를 데이터베이스에서 찾아서 내놓는 것이다. 데이터베이스 자체는 다양할 수 있다. 구조화된 데이터베이스나 위키피디아 같은 일반적인 웹이 모여있는 문서 위키피디아에 토트넘을 검색하면 관련된 문서가 나오는 과정을 도식화 2. importance 그동안 MRC는 지문이 주어진다고 가정하고 그에 대한 질문으로 모델이 만들어졌다고 가정한다 즉 질문은 무언가가 있어야 답이 가능하다. 무언가에 해당하는 지문이 주어져야 MRC 모델을 만들 수 있다는 말 바꿔말하면 질문에 맞는 지문을 주는 모델이 있어야 MRC 모델이 의미가 있다 만약 MRC와 passage retrieval을 연결할 수 있다면? Open Domain Question Answering 모델을 만들 수..
내 블로그 - 관리자 홈 전환 |
Q
Q
|
---|---|
새 글 쓰기 |
W
W
|
글 수정 (권한 있는 경우) |
E
E
|
---|---|
댓글 영역으로 이동 |
C
C
|
이 페이지의 URL 복사 |
S
S
|
---|---|
맨 위로 이동 |
T
T
|
티스토리 홈 이동 |
H
H
|
단축키 안내 |
Shift + /
⇧ + /
|
* 단축키는 한글/영문 대소문자로 이용 가능하며, 티스토리 기본 도메인에서만 동작합니다.