1. 비지도학습을 이용한 이상치 탐지(anomaly detection) 1-1) mahalanobis 거리를 이용한 outlier 탐지 1-2) k-means를 이용한 군집화 1-3) DBSCAN 1-4) isolation forest 2. isolation forest isolation을 이용하여 이상치를 탐지하는 알고리즘이다. isolation은 데이터의 나머지보다 특정 데이터 포인트가 얼마나 멀리 떨어져있는지를 나타내는 것이다. 기본적으로 이상치는 다른 정상데이터보다 분리시키기 쉽다는 성질을 이용한다 decision tree의 재귀 이진 분할을 활용하여 랜덤하게 변수를 선택하고, 이를 이용해 모든 데이터를 재귀 이진분할 시킨다. 이상치가 분할하기 쉬우므로 상대적으로 root node에 가까운 곳에 ..
내 블로그 - 관리자 홈 전환 |
Q
Q
|
---|---|
새 글 쓰기 |
W
W
|
글 수정 (권한 있는 경우) |
E
E
|
---|---|
댓글 영역으로 이동 |
C
C
|
이 페이지의 URL 복사 |
S
S
|
---|---|
맨 위로 이동 |
T
T
|
티스토리 홈 이동 |
H
H
|
단축키 안내 |
Shift + /
⇧ + /
|
* 단축키는 한글/영문 대소문자로 이용 가능하며, 티스토리 기본 도메인에서만 동작합니다.