1. sound source localization 소리가 이미지의 어디 부분에서 나는 소리인지 detection하여 heatmap으로 출력시키는 문제 image modal과 sound modal이 서로 reference하여 결론을 내리는 referencing model 소리의 context를 파악하여 image 내 object와 match하는 문제 여러 마이크에서 나오는 소리라면 위치를 찾는건 사실 큰 의미 없는데 하나의 마이크에서 여러 소리가 나오면 소리의 근원을 detection하는 것은 의미 있을 수 있다. 2. 구조 audio network에서는 sound embedding vector를 사용했지만 image network에서는 채널 공간정보가 남은 feature map을 사용 ima..
1. visual and text cross modal translation 1-1) motivation 대표적으로 image captioning image(CNN)에서 text sequence(RNN)로 변환하는 문제 이미지가 주어지면 이미지를 가장 잘 설명하는 text description을 생성하는 문제 1-2) show and tell image captioning의 시초격인 모델 ImageNet에서 pre-train한 CNN을 이용하여 image를 encoding함 image encoding vector를 LSTM의 초기 vector로 사용 start token을 넣어 word를 생성 token을 넣기 전에 fully connected layer에 넣은 다음에 LSTM module에 넣는다 예측..
1. show attend and tell 입력 이미지가 주어졌을때 CNN 모델로 feature를 추출 vector로 만드는 것이 아니라, 14*14의 spatial 정보를 가지는 feature map으로 추출 그리고 feature map과 LSTM의 interaction으로 서로 feedback을 통해 attention할 위치를 추론함 각각 어디를 봐야할지 집중할 위치를 찾아 매 순간마다 단어 단위로 text를 생성 2. visual attention 사람이 이미지를 바라볼때, 전반적인 내용을 한번에 뇌에 담지는 못한다 사람은 이미지를 볼때 한곳에 시선이 오래보고있지 않고 시선을 빠르게 움직이면서 물체를 스캔하는 형태로 물체 인지를 한다. 눈을 훑어보고, 코를 보고 입을 보고 전체적인 모습을 보면서 이..
내 블로그 - 관리자 홈 전환 |
Q
Q
|
---|---|
새 글 쓰기 |
W
W
|
글 수정 (권한 있는 경우) |
E
E
|
---|---|
댓글 영역으로 이동 |
C
C
|
이 페이지의 URL 복사 |
S
S
|
---|---|
맨 위로 이동 |
T
T
|
티스토리 홈 이동 |
H
H
|
단축키 안내 |
Shift + /
⇧ + /
|
* 단축키는 한글/영문 대소문자로 이용 가능하며, 티스토리 기본 도메인에서만 동작합니다.