1. 확률분포 x×y라는 데이터 공간에서 D는 데이터를 만들어내는 하나의 확률분포이다. 이로부터 얻어낸 데이터는 하나의 확률변수로 (x,y)∼D이다. 확률분포에 따라 데이터의 이산형, 연속형이 결정된다. 데이터 상태가 실수이냐 정수이냐랑은 크게 무관하다. 확률분포는 이론적으로 존재하며 단순히 데이터만 보고는 무슨 확률분포를 따르는지는 알 수 없다. -------------------------------------- 확률질량함수는 이산형확률변수의 확률함수로 그 값 자체가 확률이다. 확률변수가 공간 A에서 가질 수 있는 모든 경우의 수를 고려한 확률의 합으로 구해진다. ------------------------------------- 확률밀도함수는 연속형확률변수의 확률함수지만..
1. 통계학에서 말하는 확률이란? 다음과 같은 3가지 공리(axiom)를 만족하는 것을 공리적 확률(probability)이라고 한다. 확률이 가져야한다고 생각하는 가장 기본적인 3가지 성질로 증명없이 받아들인다. 1) 임의의 사건 A⊂Ω에 대하여 P(A)≥0 2) 가능한 전체 경우의 수를 포함하는 집합 Ω에 대하여 P(Ω)=1 3) 배반사건열 A1,A2,A3,...에 대하여 P(⋃Ai)=∑∞i=1P(Ai) 쉽게 말해 결국 확률은 사건 A를 0≤P(A)≤1을 만족시키는 실수집합으로 대응시키는 함수이다. 2.확률밀도함수와 확..
내 블로그 - 관리자 홈 전환 |
Q
Q
|
---|---|
새 글 쓰기 |
W
W
|
글 수정 (권한 있는 경우) |
E
E
|
---|---|
댓글 영역으로 이동 |
C
C
|
이 페이지의 URL 복사 |
S
S
|
---|---|
맨 위로 이동 |
T
T
|
티스토리 홈 이동 |
H
H
|
단축키 안내 |
Shift + /
⇧ + /
|
* 단축키는 한글/영문 대소문자로 이용 가능하며, 티스토리 기본 도메인에서만 동작합니다.