Loading...

조합의 곱의 합을 구하는 Vandermonde's identity

https://en.wikipedia.org/wiki/Vandermonde%27s_identity Vandermonde's identity - Wikipedia From Wikipedia, the free encyclopedia Mathematical theorem on convolved binomial coefficients In combinatorics, Vandermonde's identity (or Vandermonde's convolution) is the following identity for binomial coefficients: ( m + n r ) = ∑ k = 0 r ( m k ) ( n en.wikipedia.org 1. Vandermonde's identity 음이 아닌 정수 m..

2023. 5. 5. 23:09

밀러 라빈 소수 판별법(Miller-Rabin primality test) 배우기

1. 밀러 라빈 소수 판별법(Miller-Rabin primality test) 어떤 홀수 n이 소수인지 확률적으로 판별해주는 알고리즘 확률적이라는 말은, 합성수를 소수로 잘못 판별할 수 있다는 뜻이다. 주어진 n이 "합성수이다" 또는 "아마도 소수일 것이다"라는 대답을 내놓는다는 의미 2. 핵심 아이디어 알고리즘의 아이디어는 페르마의 소정리에서 시작한다. https://deepdata.tistory.com/573 페르마의 소정리 문제 풀어보면서 익히기 1. 페르마의 소정리(Fermat's little Theorem) 1-1) p가 소수이고, a가 p의 배수가 아니면( = a와 p가 서로소이면 = gcd(a,p) = 1)이면, $$a^{p-1} \equiv 1 (mod p)$$이다. 1-2) p가 소수이..

오일러의 정리를 배우고 거듭제곱의 나머지를 구하는 방법 익히기

1. 오일러의 정리(Euler's theorem) a와 n이 서로소인 양의 정수이면, 다음이 성립한다 $$a^{\varphi(n)} \equiv 1 (mod n)$$ 여기서 $\varphi(n)$은 n에 대한 오일러 phi 함수이다. 서로소가 아니라면 다음과 같이 쓸 수 있다. $$a^{\varphi(n) + 1} \equiv a (mod n)$$ n이 소수 p이면, $\varphi(p) = p-1$이므로, a,p가 서로소이면 $a^{p-1} \equiv 1 (mod p)$이다. 페르마의 소정리는 오일러의 정리의 특수한 케이스이다. 2. 거듭제곱을 어떤 정수로 나눈 나머지 $a^{n}$을 어떤 정수 p로 나눈 나머지는 어떻게 구할 수 있을까? $a^{n}$을 직접 계산한 다음에, p로 나눈 나머지를 구하..

모듈로 연산에서 나눗셈을 하는 방법(모듈로 곱셈의 역원 구하기)

1. 합동식에서 기본적으로 알아야하는 성질 1-1) 양변에 어떤 정수에 대한 덧셈이나 뺄셈을 하더라도 상관없다. $a \equiv b (mod p)$이고 $c \equiv d (mod p)$이면, $$a \pm c \equiv b \pm d (mod p)$$ 그러므로, c = d이면, 양변에 동일한 수를 더하거나 빼더라도 합동식은 변하지 않는다. $$a \pm c \equiv b \pm c (mod p)$$ 1-2) 양변에 어떤 정수에 대한 곱셈을 하더라도 상관없다 $a \equiv b (mod p)$이고 $c \equiv d (mod p)$이면, $$ac \equiv bd (mod p)$$ 그러므로, c=d이면, 양변에 동일한 수를 곱하더라도 합동식은 변하지 않는다. $$ac \equiv bc (mod..

페르마의 소정리 문제 풀어보면서 익히기

1. 페르마의 소정리(Fermat's little Theorem) 1-1) p가 소수이고, a가 p의 배수가 아니면( = a와 p가 서로소이면 = gcd(a,p) = 1)이면, $$a^{p-1} \equiv 1 (mod p)$$이다. 1-2) p가 소수이면, 모든 정수 a에 대하여 $$a^{p} \equiv a (mod p)$$ 응용하는 방법은 여러가지가 있겠지만, 하나하나 다 나열할 수도 없고, 접한지 얼마 안되었으니 나도 다 모르고 증명도 굳이 할 필요없을 것 같고, 받아들이면서 문제를 풀면서 익혀보기로 하자 2. 응용 - 합성수 판정 페르마의 소정리 역은 성립하지 않는다. 즉, a와 p가 서로소일때, $$a^{p-1} \equiv 1 (mod p)$$가 성립한다면, p는 소수이다는 거짓이다. 즉, ..

오일러의 phi 함수 직접 구현해보면서 개념 익히기

1. 오일러의 phi 함수(Euler's phi function, totient function) $\varphi(n)$은 1부터 n까지의 자연수 중에서 n과 서로소인 자연수의 개수로 정의한다. 그 성질과 응용이 매우 다양하고 또 매우 어려운데... 하나하나 파고들면 끝도 없으니까 문제 풀면서 익히기로 하자 2. 구현 예시1 - 가장 간단한 구현 가장 간단한 방법은 1이상 n이하의 자연수 중에서, n과 서로소인 것의 개수를 세보면 된다. 그러니까 1이상 n이하의 자연수 중에서 n과 최대공약수가 1인 자연수의 개수가 n이하에서 몇개인지 세보면 된다. 유클리드 호제법을 이용해서 최대공약수를 구하는 함수를 만들고, def gcd(a,b): while b != 0: a,b = b,a%b return a 2부터 ..