1. 문제 1725번: 히스토그램 (acmicpc.net) 1725번: 히스토그램 첫 행에는 N (1 ≤ N ≤ 100,000) 이 주어진다. N은 히스토그램의 가로 칸의 수이다. 다음 N 행에 걸쳐 각 칸의 높이가 왼쪽에서부터 차례대로 주어진다. 각 칸의 높이는 1,000,000,000보다 작거나 같은 자 www.acmicpc.net 2. 풀이 히스토그램이 주어질때, 찾을 수 있는 직사각형중 넓이가 가장 큰 직사각형을 찾는 문제 위와 같은 경우 다음과 같은 직사각형을 찾을 수 있을 것이다. 히스토그램이 높이 배열 A로 주어질 때, 어떤 구간 [i,j]까지 잡았을 경우, 만들 수 있는 직사각형은 높이가 가장 낮은 min(A)에 구간의 길이 j-i+1을 곱한 값이다. 따라서 가능한 모든 경우에 대해 min..
1. 두 다항식의 곱셈 다항식 f(x)=a0x0+a1x1+...+an−1xn−1과 g(x)=b0x0+b1x1+...+bn−1xn−1의 곱셈은.. f(x)g(x)=a0b0x0+(b0a1+a1b0)x1+...+an−1bn−1x2n−2로 나타날 것이다. 다항식을 각각 계수만을 가진 길이가 n인 벡터 A = [a0,a1,...,an-1], B = [b0, b1, ... , bn-1]로 나타낸다고 할때, 두 다항식의 곱셈은 길이가 2n-1인 벡터 C = [c0,c1,...,c(2n-2)]로 나타나며, $$c_{i} = \sum_{j=0..
1. 피보나치 수열의 행렬 표현 피보나치 수열의 점화식은 다음과 같다. an+1=an+an−1 an=an+0 따라서 행렬로 나타내면 다음과 같다 (an+1an)=(1110)(anan−1) n = 1부터 반복적으로 곱해보면... $$(a2a1)=(1110)\begin{pmatrix} a_{1} \\ a_{0..
1. 문제 E - Geometric Progression (atcoder.jp) E - Geometric Progression AtCoder is a programming contest site for anyone from beginners to experts. We hold weekly programming contests online. atcoder.jp 정수 A,X,M이 주어질 때, X−1∑k=0Ak를 구하는 아주 간단한 문제 2. 풀이1 이미 재귀로 푸는 방법을 배운적 있다 컴퓨터가 등비수열의 합을 구하는 방법 (tistory.com) 컴퓨터가 등비수열의 합을 구하는 방법 1. 문제 15712번: 등비수열 (acmicpc.net) 15712번: 등비수열 첫째 줄에 a..
1. 문제 15712번: 등비수열 (acmicpc.net) 15712번: 등비수열 첫째 줄에 a, r, n, mod가 공백으로 구분되어 주어진다. a, r, n, mod는 모두 1보다 크거나 같고, 109보다 작거나 같은 자연수이다. www.acmicpc.net 초항이 a, 공비가 r, 항 수가 n인 등비수열의 합을 mod로 나눈 나머지를 구하는 간단한 문제 초항이 a이고 공비가 r이며 항 수가 n인 등비수열의 합은.. 공비 r이 1이 아니면, S=a×rn−1r−1 이라는 아주 쉬운 공식이 있고 이거에 따라 계산해서 mod로 나눈 나머지 구하면 되는거 아니냐 라고 쉽게 생각하면 이 문제는 풀수가 없다 a,r,n이 작으면 상관 없겠지만... 매우 크면 $r^{n..
1. 페르마의 소정리(Fermat's little Theorem) 1-1) p가 소수이고, a가 p의 배수가 아니면( = a와 p가 서로소이면 = gcd(a,p) = 1)이면, ap−1≡1(modp)이다. 1-2) p가 소수이면, 모든 정수 a에 대하여 ap≡a(modp) 응용하는 방법은 여러가지가 있겠지만, 하나하나 다 나열할 수도 없고, 접한지 얼마 안되었으니 나도 다 모르고 증명도 굳이 할 필요없을 것 같고, 받아들이면서 문제를 풀면서 익혀보기로 하자 2. 응용 - 합성수 판정 페르마의 소정리 역은 성립하지 않는다. 즉, a와 p가 서로소일때, ap−1≡1(modp)가 성립한다면, p는 소수이다는 거짓이다. 즉, ..
내 블로그 - 관리자 홈 전환 |
Q
Q
|
---|---|
새 글 쓰기 |
W
W
|
글 수정 (권한 있는 경우) |
E
E
|
---|---|
댓글 영역으로 이동 |
C
C
|
이 페이지의 URL 복사 |
S
S
|
---|---|
맨 위로 이동 |
T
T
|
티스토리 홈 이동 |
H
H
|
단축키 안내 |
Shift + /
⇧ + /
|
* 단축키는 한글/영문 대소문자로 이용 가능하며, 티스토리 기본 도메인에서만 동작합니다.