1. idempotent matrix A2=A를 만족시키는 행렬 A를 말합니다. A2이 정의되어야하므로 기본적으로 idempotent matrix일려면 행렬 곱의 정의로부터 square matrix여야 합니다. 중요한 성질을 몇가지 나열하자면 1-1) idempotent matrix인 A가 역행렬을 가진다면 반드시 identity matrix가 됩니다. A2=A에서 A−1를 곱하면 A=I가 됩니다. 이 말은 반대로 말하면 idempotent matrix인데 identity matrix가 아니면 역행렬이 존재하지 않는다는 뜻입니다. 1-2) idempotent matrix의 trace는 rank와 같습니다. 1-3) idempotent matrix는..
내 블로그 - 관리자 홈 전환 |
Q
Q
|
---|---|
새 글 쓰기 |
W
W
|
글 수정 (권한 있는 경우) |
E
E
|
---|---|
댓글 영역으로 이동 |
C
C
|
이 페이지의 URL 복사 |
S
S
|
---|---|
맨 위로 이동 |
T
T
|
티스토리 홈 이동 |
H
H
|
단축키 안내 |
Shift + /
⇧ + /
|
* 단축키는 한글/영문 대소문자로 이용 가능하며, 티스토리 기본 도메인에서만 동작합니다.