현재 딥러닝이 분류문제의 기본 상식으로 알려져있지만 이전에 고전적인 머신러닝에서는 decision tree를 이용하여 분류문제를 해결했습니다. decision tree는 주어진 dataset을 class별로 구별해나가는 하나의 tree를 생성하는 모형인데요. 어떤 식으로 구별해나가는지 그 원리를 예를 들어 설명하겠습니다. 주어진 dataset은 여러개의 feature를 가지고 있겠죠? 예를 들면 다음과 같은 dataset을 생각해봅시다. 현재 D1~D14까지 data를 outlook, temperature, humidity, wind라는 feature를 이용하여 target 변수인 play tennis의 yes or no 여부를 구분해야합니다. 현재 구분하기 전에 yes는 9개 있고 no는 5개 있습니다..
1. quantile transformation의 이론적인 설명 주어진 데이터 x1,x2,...,xn의 분포를 그려보니 다루기 힘들거나 마음에 안들어서 분포를 변환할 필요가 있다고 합시다. 주어진 데이터 x1,x2,...,xn의 분포를 나타내는 누적확률분포함수 F(x)를 먼저 구해봅시다. 그런데 관측된 값으로는 이것을 구할 수 없으니 경험적 분포함수로 누적확률분포함수를 추정합니다. 주어진 데이터 xi에 대하여 F(X)≈F(xi)로 추정했다고 합시다. 분포함수에 관한 theorem 1에서 "X의 누적확률분포함수가 F(x)라면 확률변수 Y=F(X)는 U(0,1)을 따른다”라고 했습니다. 이것이 무슨 ..
1. boolean index boolean array를 넣어 array를 추출함 condition을 넣어 condition에 맞는 array를 추출하는 방식 2. fancy index index array를 넣어 해당 index에 맞는 값들을 추출 index는 int로 선언해야 index로 인식함 3. data in&out loadtxt로 텍스트 파일을 열고 savetxt로 저장함 astype()은 원하는 type으로 바꿔줌 np.save를 통해 array를 pickle형태로 저장하고 다시 불러올 수 있음 array를 처음부터 다시 만들기 까다로울 때, 예상치 못한 상황이 발생할 때를 대비해서 저장해놓고 사용하면 편할 수 있음
1. np.where() 1-1) np.where(,(True일때 출력),(False일때 출력)) 1-2) np.where() condition이 True인 index만을 차례대로 array로 반환 2. isnan & isfinite np.isnan() NaN인 값을 찾아 True, False array로 반환 np.isfinite() finite인 값 찾아 True, False array로 반환 3. argmax,argmin array내 최댓값 index 반환 >> argmax array내 최솟값 index 반환 >> argmin sorting한 index 반환 >>argsort a[np.argmin(a)] 하면 최솟값을 출력할 수 있음 비슷하게 a[a.argsort()] 하면 sorting한 arra..
1. time array 연산의 시간을 비교 일반적으로 for loop가 가장 느리고 다음으로 list comprehension이 빠르고 numpy가 가장 빠르다 numpy는 c로 구현하여 연산속도의 이점을 확보하고 dynamic typing을 포기 대용량 계산에서 numpy가 이득 concatenate같은 단순 할당연산에는 속도 이점이 없음 위에서부터 for loop연산,list comprehension연산,numpy 연산 numpy가 압도적으로 빠르다 2. comparison 단순히 array를 scalar와 비교하면 array 원소 모두에 대해 comparison하여 boolean array로 반환 3. any,all np.any() array내 모든 원소에 대해 하나라도 True이면 True np..
1. element wise operation numpy는 단순 list와는 다르게 기본적으로 array끼리 사칙연산을 지원함 기본적으로는 *,+,-는 대응하는 원소끼리 연산함 dot product는 일반적인 행렬곱으로 a.dot(b) , a@b transpose는 a.T , a.transpose() 2. broadcasting shape가 다른 배열 간 연산도 지원함 scalar가 matrix의 모든 원소에 대응하여 연산함
내 블로그 - 관리자 홈 전환 |
Q
Q
|
---|---|
새 글 쓰기 |
W
W
|
글 수정 (권한 있는 경우) |
E
E
|
---|---|
댓글 영역으로 이동 |
C
C
|
이 페이지의 URL 복사 |
S
S
|
---|---|
맨 위로 이동 |
T
T
|
티스토리 홈 이동 |
H
H
|
단축키 안내 |
Shift + /
⇧ + /
|
* 단축키는 한글/영문 대소문자로 이용 가능하며, 티스토리 기본 도메인에서만 동작합니다.