1. 나비정리 현 PQ의 중점 M을 지나는 두 현 AB와 CD가 있고, 현 AD, CB가 PQ와 만나는 점이 X,Y이면, M은 XY의 중점이기도 하다. 2. 증명 증명이 매우 많은데 하나만 따라가보자 [증명] 나비 정리 (The Butterfly Theorem) - 몇 가지 다른 방법 : 네이버 블로그 (naver.com) [증명] 나비 정리 (The Butterfly Theorem) - 몇 가지 다른 방법 수학교실 - Math7090 blog.naver.com 아래 그림에서 현 AB의 수직 이등분선이 원과 만나는 점을 각각 C,D라고 하자. 현의 수직이등분선은 원의 중심 O를 지난다는 성질이 있다 현의 수직이등분선 – 수학방 (mathbang.net) 현의 수직이등분선 1학년 때 여러 가지 도형의 종류..
내 블로그 - 관리자 홈 전환 |
Q
Q
|
---|---|
새 글 쓰기 |
W
W
|
글 수정 (권한 있는 경우) |
E
E
|
---|---|
댓글 영역으로 이동 |
C
C
|
이 페이지의 URL 복사 |
S
S
|
---|---|
맨 위로 이동 |
T
T
|
티스토리 홈 이동 |
H
H
|
단축키 안내 |
Shift + /
⇧ + /
|
* 단축키는 한글/영문 대소문자로 이용 가능하며, 티스토리 기본 도메인에서만 동작합니다.