불순도를 측정하는 기준으로 entropy를 사용했지만 gini 계수라는 것도 있습니다. 그 외에도 카이제곱 통계량이나 분산의 감소량같은 것도 사용하며 이에 따라 C4.5, CART, CHAID 등 다양한 decision tree 알고리즘이 있습니다. 지금까지 설명한 알고리즘은 ID3라는 기본적인 알고리즘이었습니다. gini 계수는 다음과 같이 정의합니다. 1−c∑i=1p2i=G(U) 이 식을 그림1을 예로 들어 설명하면 빨간색 데이터는 6개이고 파란색 데이터는 4개인데 p1=610,p2=410으로 G(U)=0.48 반면 entropy로 계산한 불순도는 H(U)=0.972
위와 같이 decision tree는 recursive partitioning을 통해 각 node에서 information gain이 순간 순간 최대가 되는 방향으로 feature를 선택하고 최종 node의 entropy가 0이 될 때까지 구분을 진행합니다. 그런데 딥러닝을 많이 하신 혹시나 이 글을 읽고 계신 분은 짐작하셨겠지만 주어진 training data에 너무나 fitting된다는 단점이 있습니다. 그러니까 새로운 data가 들어올 때 사실 정확한 분류를 해줄지는 미지수라는 점입니다. 그래서 pruning이라는 방법을 수행하여 일반화 능력(generalization performance)을 올려줍니다. 일반화 능력은 딥러닝에서 모델이 train중 한 번도 보지 못한 test data에 대해서도 ..
현재 딥러닝이 분류문제의 기본 상식으로 알려져있지만 이전에 고전적인 머신러닝에서는 decision tree를 이용하여 분류문제를 해결했습니다. decision tree는 주어진 dataset을 class별로 구별해나가는 하나의 tree를 생성하는 모형인데요. 어떤 식으로 구별해나가는지 그 원리를 예를 들어 설명하겠습니다. 주어진 dataset은 여러개의 feature를 가지고 있겠죠? 예를 들면 다음과 같은 dataset을 생각해봅시다. 현재 D1~D14까지 data를 outlook, temperature, humidity, wind라는 feature를 이용하여 target 변수인 play tennis의 yes or no 여부를 구분해야합니다. 현재 구분하기 전에 yes는 9개 있고 no는 5개 있습니다..
1. quantile transformation의 이론적인 설명 주어진 데이터 x1,x2,...,xn의 분포를 그려보니 다루기 힘들거나 마음에 안들어서 분포를 변환할 필요가 있다고 합시다. 주어진 데이터 x1,x2,...,xn의 분포를 나타내는 누적확률분포함수 F(x)를 먼저 구해봅시다. 그런데 관측된 값으로는 이것을 구할 수 없으니 경험적 분포함수로 누적확률분포함수를 추정합니다. 주어진 데이터 xi에 대하여 F(X)≈F(xi)로 추정했다고 합시다. 분포함수에 관한 theorem 1에서 "X의 누적확률분포함수가 F(x)라면 확률변수 Y=F(X)는 U(0,1)을 따른다”라고 했습니다. 이것이 무슨 ..
데이터가 무작위로 섞여있는 상태를 생각해봅시다. 이럴 때 우리는 무작위로 선을 그어 빨간색 데이터와 파란색 데이터를 구분하고자 합니다. 어떻게 그어야 가장 잘 분류를 했다고 말할 수 있을까요? 그러니까 빨간색과 파란색을 어떤 선을 그어서 구분을 해야 가장 잘 구분을 했다고 말할 수 있을까요? 직관적으로 한쪽 영역에는 순수하게 파란색만 존재하고 다른쪽 영역에는 순수하게 빨간색만 존재해야겠죠? 무작위로 섞여있는 불순물한 상태(impurity)에서 순수한 데이터들만 존재하도록 (purity) 영역을 구분하는 것이 데이터를 잘 분류한 것입니다. 다른 말로는 불확실하게 데이터가 섞여있는 상태에서 누구라도 확실하게 빨간색과 파란색을 알아볼 수 있도록 만드는 작업이 분류라는 것입니다. decision tree는 이러..
그 이름 Cat가 categorical feature를 뜻하는데 categorical 변수에 최적화되어있다고 논문에서 주장하고 있습니다. “ Two critical algorithmic advances introduced in CatBoost are the implementation of ordered boosting, a permutation-driven alternative to the classic algorithm, and an innovative algorithm for processing categorical features “ 논문에서 언급하는 ordered boosting은 일반적인 boosting이 모든 데이터 row에 대해 gradient 업데이트 과정을 거쳤다면 Catboost는 다음..
내 블로그 - 관리자 홈 전환 |
Q
Q
|
---|---|
새 글 쓰기 |
W
W
|
글 수정 (권한 있는 경우) |
E
E
|
---|---|
댓글 영역으로 이동 |
C
C
|
이 페이지의 URL 복사 |
S
S
|
---|---|
맨 위로 이동 |
T
T
|
티스토리 홈 이동 |
H
H
|
단축키 안내 |
Shift + /
⇧ + /
|
* 단축키는 한글/영문 대소문자로 이용 가능하며, 티스토리 기본 도메인에서만 동작합니다.