Numpy 기초 2편
1. reshape 원소 개수는 바꾸지 않고 array의 shape를 변경함 원소 개수는 shape의 모든 축의 곱 np.array().reshape() dim에 -1을 포함시키면 그 부분은 파이썬이 데이터 수에 맞게 알아서 잡아준다 2. flatten 다차원 array를 1차원 array로 만들어준다 (2,2,4)의 3차원 array를 (16,)의 1차원 array로 flatten 시킴 원소의 수인 모든 shape의 곱이 16으로 일정해야함 3. indexing 리스트와는 다르게 [a,b]의 직관적인 indexing을 제공함 indexing으로 값 변경도 가능 0행 2열의 원소를 test_exampe[0,2]로 불러올 수 있음 0,0의 원소인 1을 test_example[0,0]=10으로 변경 가능 4..