1. CNN visualization의 기본 CNN은 단순히 학습가능한 convolution layer와 nonlinear activation의 연속으로 이루어진 연산기 학습을 잘하면 인간 성능 이상으로 좋은 성능을 보이기도 하는데 도대체 왜 잘되는 걸까? 단순히 학습을 하니까? 학습을 통해 convolution filter은 도대체 무엇을 배우길래 잘하는 걸까? 혹은 어떤 경우는 쉽게 안되는 경우도 많고 성능도 잘 안나오는 경우도 많은데 그것은 왜 안되는걸까? CNN이라는 건 입력이 주어지면 출력이 나오는 black box같은 기계로 생각할 수 있다 왜 안되는지 알고자 그 안을 뜯어보면 복잡한 가중치와 복잡한 연결들로 이루어져 사람이 이해하기가 어렵다 만약 CNN안에서 무슨 일이 일어나는지 사람이 이해..
내 블로그 - 관리자 홈 전환 |
Q
Q
|
---|---|
새 글 쓰기 |
W
W
|
글 수정 (권한 있는 경우) |
E
E
|
---|---|
댓글 영역으로 이동 |
C
C
|
이 페이지의 URL 복사 |
S
S
|
---|---|
맨 위로 이동 |
T
T
|
티스토리 홈 이동 |
H
H
|
단축키 안내 |
Shift + /
⇧ + /
|
* 단축키는 한글/영문 대소문자로 이용 가능하며, 티스토리 기본 도메인에서만 동작합니다.