1. introduction 2016, big data’s disparate impact에서 연구 데이터가 좋으면 모형의 결과도 좋고 편향이 많으면 결과도 그럴 것 사회 자체에서 가지는 많은 편향들이 데이터의 형태로 AI 모델에 들어간다 정확히 어디 있는지는 모르겠지만 숨겨져있는 어떤 패턴에 의해 알고리즘을 사용하다보면 소수의 어떤 그룹들이 의도하지 않은 차별을 당한다 2. bias source 2-1) target variable target variable이나 class label을 정의하는 순간부터 bias가 들어갈 수 있다 예를 들어 ‘good employee’는 어떻게 정의해야? 누구는 일을 잘하는 사람, 누구는 이 회사에 오랜 기간 일을 하는 사람, 누구는 다른 사람과 잘 어울리는 사람, 누구..
내 블로그 - 관리자 홈 전환 |
Q
Q
|
---|---|
새 글 쓰기 |
W
W
|
글 수정 (권한 있는 경우) |
E
E
|
---|---|
댓글 영역으로 이동 |
C
C
|
이 페이지의 URL 복사 |
S
S
|
---|---|
맨 위로 이동 |
T
T
|
티스토리 홈 이동 |
H
H
|
단축키 안내 |
Shift + /
⇧ + /
|
* 단축키는 한글/영문 대소문자로 이용 가능하며, 티스토리 기본 도메인에서만 동작합니다.