1. transformer 아키텍처 2017년 구글에서 발표한 Attention is All you need 논문에서 처음 등장 머신러닝을 통해 언어를 번역하는 기계 번역 성능을 높이기 위한 방법을 연구하였는데, 당시 널리 사용된 RNN에 비해 성능 면에서 큰 폭으로 앞섰다. 또한 RNN에 비해 모델 학습 속도도 빨랐다. 이렇게 완전히 새로운 형태의 모델이 성능과 속도 면에서 뛰어난 모습을 보여 많은 인공지능 연구자들이 각자 연구에 transformer를 적용하기 시작 현재 transformer은 자연어 처리는 물론 컴퓨터 비전, 추천 시스템 등 모든 AI 분야에서 핵심 아키텍처가 되었다. 기존에 자연어 처리 문제에서 사용하던 RNN은 다음과 같이 텍스트를 순차적으로 하나씩 입력하는 형태다 사람이..
1. tokenizing 긴 text가 들어왔을 때 token단위로 text를 나누는 기술 가장 simple하게는 띄어쓰기 단위로 나누는 방법이 있는데 요즘에는 비효율적이라는 인식이 많다 띄어쓰기에서 더 나아가 형태소나 subword 형태로 tokenizing하는 경우가 많아 2. subword tokenizing 자주 쓰이는 글자 조합은 한단어로 취급하고 그렇지 않은 조합은 subword로 더욱 쪼갠다 ‘아버지 가방에 들어가신다’를 만약 띄어쓰기 기준으로 tokenizing을 하면 ‘아버지’, ‘가방에’, ‘들어가신다’인데 단어가 너무 커져 단어끼리 비교가 어렵대 그래서 조금 더 잘게 잘라서 하나의 단어를 1번 더 들어가 자르는 subword tokenizing을 함 ‘아버지’, ‘가’, ‘##방’, ..