1. introduction 이미 학습된 network에서 중요도가 낮은 parameter를 제거하여 model의 size를 줄이고자 하는 작업 parameter의 중요도를 어떻게 정의해야 좋은지 생각해보는 것이 주요 연구 과제 weight의 L2 norm이 크면 기여도가 높은 parameter? gradient가 크면 중요도가 높은 weight? 혹은 둘을 합쳐서 평가할 수도 있고 또 다른 metric을 생각해볼 수도 있다 학습된 parameter의 일부가 제거된 모습 2. structured pruning parameter를 그룹 단위로 pruning하는 기법들을 모두 일컫는 말 그룹이라는 것은 channel단위일수도 있고 filter 단위나 layer 단위일수도 있음 필요없는 (0에..
1. passage embedding 하나의 단락 passage를 embedding으로 변환하는 것 주어진 단락이 가지는 뜻을 담는 숫자를 가지는 벡터에 mapping하는 것이 목표 passage embedding은 문서를 벡터로 변환하는 것이다. 2. sparse embedding TF-IDF같은 embedding은 벡터 크기가 매우 크지만 0인 숫자가 대부분인 sparse vector이다. 기반이 bag of words로 vocab의 특정 단어가 문서에 있는 경우만 nonzero가 되므로 거의 대부분 90%이상의 원소가 0인 경우가 종종 발생함 차원 수가 매우 큰 경우가 대부분인데 compressed format으로 어느 정도는 극복 가능함 예를 들어 nonzero 위치와 그 값만 저장하여 공간을 절..
1. embedding space 지문을 vector space에 mapping하여 하나의 vector로 나타냄 vector space는 여러 숫자들로 이루어진 포인트들이 모인 상당히 고차원의 추상적인 공간 이렇게 지문을 embedding space 위에 벡터로 나타내면 두 지문 사이 유사성을 두 벡터 사이 거리를 이용해 계산할 수 있다. 2. bag of words sparse하다는 뜻은 dense의 반댓말로 0이 아닌 숫자가 상당히 적다는 뜻 바꿔말하면 대부분이 0인 원소를 가지는 벡터가 sparse vector bag of words의 기본형은 문서에 vocab의 각 단어가 존재하면 1, 존재하지 않으면 0을 부여하여 아주 긴 벡터로 표현하는 방법 특정 단어가 존재하는지 아닌지로만 표현함 벡터의 길..
내 블로그 - 관리자 홈 전환 |
Q
Q
|
---|---|
새 글 쓰기 |
W
W
|
글 수정 (권한 있는 경우) |
E
E
|
---|---|
댓글 영역으로 이동 |
C
C
|
이 페이지의 URL 복사 |
S
S
|
---|---|
맨 위로 이동 |
T
T
|
티스토리 홈 이동 |
H
H
|
단축키 안내 |
Shift + /
⇧ + /
|
* 단축키는 한글/영문 대소문자로 이용 가능하며, 티스토리 기본 도메인에서만 동작합니다.