1. occlusion map 1-1) motivation 이제부터는 모형이 특정 입력을 어떻게 바라보고 출력을 내는지 알아볼 것 saliency test라는 것은 각 이미지의 class를 판정하기 위해 모델이 중요하게 생각하는 부분들을 알아보는 과정 1-2) occlusion map 주어진 코끼리 이미지에서 occlusion patch라는 것으로 가려서 모델에 넣어줌 동일한 코끼리 이미지를 서로 다른 occlusion patch로 가렸을 때 각각이 코끼리라고 분류할 조건부 확률을 구해본다면 당연하지만 코끼리로 판단하는데 중요한 부분을 가릴수록 코끼리라고 할 확률이 떨어진다 occlusion patch로 어디를 가리느냐에 따라 score가 다르다. 중요한 부분을 가리면 score가 급격하게 떨어지고 큰 ..
내 블로그 - 관리자 홈 전환 |
Q
Q
|
---|---|
새 글 쓰기 |
W
W
|
글 수정 (권한 있는 경우) |
E
E
|
---|---|
댓글 영역으로 이동 |
C
C
|
이 페이지의 URL 복사 |
S
S
|
---|---|
맨 위로 이동 |
T
T
|
티스토리 홈 이동 |
H
H
|
단축키 안내 |
Shift + /
⇧ + /
|
* 단축키는 한글/영문 대소문자로 이용 가능하며, 티스토리 기본 도메인에서만 동작합니다.