1. 학습관점 R-CNN은 오직 마지막 단의 SVM classifier만 학습 가능 Fast R-CNN은 첫 feature map을 뽑는 CNN도 학습이 가능 Faster R-CNN은 region proposal network로 모든 과정이 학습 가능 R-CNN에 언급 한번 안한 box regression이 있다는 것이 특이한데 실제로 가능하다고 한다 2. input size 관점 R-CNN은 CNN을 2000번 돌리며 CNN에 들어가는 input size는 고정되어있다 Fast R-CNN 이후는 ROI pooling을 이용하여 CNN의 input size를 임의로 해도 동작하도록 만들었다 3. region proposal 관점 Fast R-CNN까지 region proposal로 selective se..
내 블로그 - 관리자 홈 전환 |
Q
Q
|
---|---|
새 글 쓰기 |
W
W
|
글 수정 (권한 있는 경우) |
E
E
|
---|---|
댓글 영역으로 이동 |
C
C
|
이 페이지의 URL 복사 |
S
S
|
---|---|
맨 위로 이동 |
T
T
|
티스토리 홈 이동 |
H
H
|
단축키 안내 |
Shift + /
⇧ + /
|
* 단축키는 한글/영문 대소문자로 이용 가능하며, 티스토리 기본 도메인에서만 동작합니다.