1. hyperparameter와 parameter의 차이? hyperparameter는 학습과정에서 control할 수 있는 parameter value를 의미하고 학습 전에 사람이 직접 설정해줘야함 parameter는 모델이 학습과정에서 자동으로 배워나가는 값 hyperparameter tuning이란 이러한 learning 알고리즘에서 hyperparameter를 최적화하는 과정임 2. hyperparameter optimization model system의 매커니즘에 영향을 줄 수 있는 여러 요소들 batch_size, learning rate, loss, k-fold, dropout, regularization, optimizer, hidden layer 종류는 많음 hyperparameter..
내 블로그 - 관리자 홈 전환 |
Q
Q
|
---|---|
새 글 쓰기 |
W
W
|
글 수정 (권한 있는 경우) |
E
E
|
---|---|
댓글 영역으로 이동 |
C
C
|
이 페이지의 URL 복사 |
S
S
|
---|---|
맨 위로 이동 |
T
T
|
티스토리 홈 이동 |
H
H
|
단축키 안내 |
Shift + /
⇧ + /
|
* 단축키는 한글/영문 대소문자로 이용 가능하며, 티스토리 기본 도메인에서만 동작합니다.