BART는 기계 독해, 기계 번역, 요약, 대화 등 sequence to sequence 문제의 pre training을 위한 denoising autoencoder 1. BERT와 BART BERT는 transformer의 encoder만 활용했음 각 단어의 encoder embedding을 가져와 embedding을 수치화시킨 뒤 정답의 시작과 끝의 위치를 알아맞추는 extraction에 어울림 BART는 transformer의 encoder와 decoder가 모두 존재하여 encoder에서 input의 encoding을 수행한 뒤 encoding을 바탕으로 decoder에서 decoding을 통해 실제 text를 generation할 수 있어서 generation based MRC의 기본 모델로 사..
1. pre-trained model은 왜 의미있을까? pre-training과정에서 수행한 up-stream task의 data는 별도의 label이 필요하지 않은 데이터라는 것이 하나의 강점이다. ------------------------------------------------------------------------------------------------------------------------------- 다음 단어를 맞추는 것이 label이 없다고? GPT-1이 수행한 다음 단어를 예측하는 pre-training task는 input sequence와 output sequence가 동일한 task이다. 쉽게 말해 input sequence를 차례대로 읽어들여 input sequenc..
내 블로그 - 관리자 홈 전환 |
Q
Q
|
---|---|
새 글 쓰기 |
W
W
|
글 수정 (권한 있는 경우) |
E
E
|
---|---|
댓글 영역으로 이동 |
C
C
|
이 페이지의 URL 복사 |
S
S
|
---|---|
맨 위로 이동 |
T
T
|
티스토리 홈 이동 |
H
H
|
단축키 안내 |
Shift + /
⇧ + /
|
* 단축키는 한글/영문 대소문자로 이용 가능하며, 티스토리 기본 도메인에서만 동작합니다.